Bug Summary

File:libclamav/c++/llvm/lib/Target/X86/X86FastISel.cpp
Location:line 1582, column 7
Description:Value stored to 'Emitted' is never read

Annotated Source Code

1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/Analysis.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/FunctionLoweringInfo.h"
29#include "llvm/CodeGen/MachineConstantPool.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38namespace {
39
40class X86FastISel : public FastISel {
41 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
42 /// make the right decision when generating code for different targets.
43 const X86Subtarget *Subtarget;
44
45 /// StackPtr - Register used as the stack pointer.
46 ///
47 unsigned StackPtr;
48
49 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
50 /// floating point ops.
51 /// When SSE is available, use it for f32 operations.
52 /// When SSE2 is available, use it for f64 operations.
53 bool X86ScalarSSEf64;
54 bool X86ScalarSSEf32;
55
56public:
57 explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
58 Subtarget = &TM.getSubtarget<X86Subtarget>();
59 StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
60 X86ScalarSSEf64 = Subtarget->hasSSE2();
61 X86ScalarSSEf32 = Subtarget->hasSSE1();
62 }
63
64 virtual bool TargetSelectInstruction(const Instruction *I);
65
66#include "X86GenFastISel.inc"
67
68private:
69 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
70
71 bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
72
73 bool X86FastEmitStore(EVT VT, const Value *Val,
74 const X86AddressMode &AM);
75 bool X86FastEmitStore(EVT VT, unsigned Val,
76 const X86AddressMode &AM);
77
78 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
79 unsigned &ResultReg);
80
81 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
82 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
83
84 bool X86SelectLoad(const Instruction *I);
85
86 bool X86SelectStore(const Instruction *I);
87
88 bool X86SelectRet(const Instruction *I);
89
90 bool X86SelectCmp(const Instruction *I);
91
92 bool X86SelectZExt(const Instruction *I);
93
94 bool X86SelectBranch(const Instruction *I);
95
96 bool X86SelectShift(const Instruction *I);
97
98 bool X86SelectSelect(const Instruction *I);
99
100 bool X86SelectTrunc(const Instruction *I);
101
102 bool X86SelectFPExt(const Instruction *I);
103 bool X86SelectFPTrunc(const Instruction *I);
104
105 bool X86SelectExtractValue(const Instruction *I);
106
107 bool X86VisitIntrinsicCall(const IntrinsicInst &I);
108 bool X86SelectCall(const Instruction *I);
109
110 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
111 CCAssignFn *CCAssignFnForRet(CallingConv::ID CC, bool isTailCall = false);
112
113 const X86InstrInfo *getInstrInfo() const {
114 return getTargetMachine()->getInstrInfo();
115 }
116 const X86TargetMachine *getTargetMachine() const {
117 return static_cast<const X86TargetMachine *>(&TM);
118 }
119
120 unsigned TargetMaterializeConstant(const Constant *C);
121
122 unsigned TargetMaterializeAlloca(const AllocaInst *C);
123
124 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
125 /// computed in an SSE register, not on the X87 floating point stack.
126 bool isScalarFPTypeInSSEReg(EVT VT) const {
127 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
128 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
129 }
130
131 bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
132};
133
134} // end anonymous namespace.
135
136bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
137 VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
138 if (VT == MVT::Other || !VT.isSimple())
139 // Unhandled type. Halt "fast" selection and bail.
140 return false;
141
142 // For now, require SSE/SSE2 for performing floating-point operations,
143 // since x87 requires additional work.
144 if (VT == MVT::f64 && !X86ScalarSSEf64)
145 return false;
146 if (VT == MVT::f32 && !X86ScalarSSEf32)
147 return false;
148 // Similarly, no f80 support yet.
149 if (VT == MVT::f80)
150 return false;
151 // We only handle legal types. For example, on x86-32 the instruction
152 // selector contains all of the 64-bit instructions from x86-64,
153 // under the assumption that i64 won't be used if the target doesn't
154 // support it.
155 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
156}
157
158#include "X86GenCallingConv.inc"
159
160/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
161/// convention.
162CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
163 bool isTaillCall) {
164 if (Subtarget->is64Bit()) {
165 if (CC == CallingConv::GHC)
166 return CC_X86_64_GHC;
167 else if (Subtarget->isTargetWin64())
168 return CC_X86_Win64_C;
169 else
170 return CC_X86_64_C;
171 }
172
173 if (CC == CallingConv::X86_FastCall)
174 return CC_X86_32_FastCall;
175 else if (CC == CallingConv::X86_ThisCall)
176 return CC_X86_32_ThisCall;
177 else if (CC == CallingConv::Fast)
178 return CC_X86_32_FastCC;
179 else if (CC == CallingConv::GHC)
180 return CC_X86_32_GHC;
181 else
182 return CC_X86_32_C;
183}
184
185/// CCAssignFnForRet - Selects the correct CCAssignFn for a given calling
186/// convention.
187CCAssignFn *X86FastISel::CCAssignFnForRet(CallingConv::ID CC,
188 bool isTaillCall) {
189 if (Subtarget->is64Bit()) {
190 if (Subtarget->isTargetWin64())
191 return RetCC_X86_Win64_C;
192 else
193 return RetCC_X86_64_C;
194 }
195
196 return RetCC_X86_32_C;
197}
198
199/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
200/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
201/// Return true and the result register by reference if it is possible.
202bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
203 unsigned &ResultReg) {
204 // Get opcode and regclass of the output for the given load instruction.
205 unsigned Opc = 0;
206 const TargetRegisterClass *RC = NULL__null;
207 switch (VT.getSimpleVT().SimpleTy) {
208 default: return false;
209 case MVT::i1:
210 case MVT::i8:
211 Opc = X86::MOV8rm;
212 RC = X86::GR8RegisterClass;
213 break;
214 case MVT::i16:
215 Opc = X86::MOV16rm;
216 RC = X86::GR16RegisterClass;
217 break;
218 case MVT::i32:
219 Opc = X86::MOV32rm;
220 RC = X86::GR32RegisterClass;
221 break;
222 case MVT::i64:
223 // Must be in x86-64 mode.
224 Opc = X86::MOV64rm;
225 RC = X86::GR64RegisterClass;
226 break;
227 case MVT::f32:
228 if (Subtarget->hasSSE1()) {
229 Opc = X86::MOVSSrm;
230 RC = X86::FR32RegisterClass;
231 } else {
232 Opc = X86::LD_Fp32m;
233 RC = X86::RFP32RegisterClass;
234 }
235 break;
236 case MVT::f64:
237 if (Subtarget->hasSSE2()) {
238 Opc = X86::MOVSDrm;
239 RC = X86::FR64RegisterClass;
240 } else {
241 Opc = X86::LD_Fp64m;
242 RC = X86::RFP64RegisterClass;
243 }
244 break;
245 case MVT::f80:
246 // No f80 support yet.
247 return false;
248 }
249
250 ResultReg = createResultReg(RC);
251 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
252 DL, TII.get(Opc), ResultReg), AM);
253 return true;
254}
255
256/// X86FastEmitStore - Emit a machine instruction to store a value Val of
257/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
258/// and a displacement offset, or a GlobalAddress,
259/// i.e. V. Return true if it is possible.
260bool
261X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
262 const X86AddressMode &AM) {
263 // Get opcode and regclass of the output for the given store instruction.
264 unsigned Opc = 0;
265 switch (VT.getSimpleVT().SimpleTy) {
266 case MVT::f80: // No f80 support yet.
267 default: return false;
268 case MVT::i1: {
269 // Mask out all but lowest bit.
270 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
271 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
272 TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
273 Val = AndResult;
274 }
275 // FALLTHROUGH, handling i1 as i8.
276 case MVT::i8: Opc = X86::MOV8mr; break;
277 case MVT::i16: Opc = X86::MOV16mr; break;
278 case MVT::i32: Opc = X86::MOV32mr; break;
279 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
280 case MVT::f32:
281 Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
282 break;
283 case MVT::f64:
284 Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
285 break;
286 }
287
288 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
289 DL, TII.get(Opc)), AM).addReg(Val);
290 return true;
291}
292
293bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
294 const X86AddressMode &AM) {
295 // Handle 'null' like i32/i64 0.
296 if (isa<ConstantPointerNull>(Val))
297 Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
298
299 // If this is a store of a simple constant, fold the constant into the store.
300 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
301 unsigned Opc = 0;
302 bool Signed = true;
303 switch (VT.getSimpleVT().SimpleTy) {
304 default: break;
305 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
306 case MVT::i8: Opc = X86::MOV8mi; break;
307 case MVT::i16: Opc = X86::MOV16mi; break;
308 case MVT::i32: Opc = X86::MOV32mi; break;
309 case MVT::i64:
310 // Must be a 32-bit sign extended value.
311 if ((int)CI->getSExtValue() == CI->getSExtValue())
312 Opc = X86::MOV64mi32;
313 break;
314 }
315
316 if (Opc) {
317 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
318 DL, TII.get(Opc)), AM)
319 .addImm(Signed ? (uint64_t) CI->getSExtValue() :
320 CI->getZExtValue());
321 return true;
322 }
323 }
324
325 unsigned ValReg = getRegForValue(Val);
326 if (ValReg == 0)
327 return false;
328
329 return X86FastEmitStore(VT, ValReg, AM);
330}
331
332/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
333/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
334/// ISD::SIGN_EXTEND).
335bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
336 unsigned Src, EVT SrcVT,
337 unsigned &ResultReg) {
338 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
339 Src, /*TODO: Kill=*/false);
340
341 if (RR != 0) {
342 ResultReg = RR;
343 return true;
344 } else
345 return false;
346}
347
348/// X86SelectAddress - Attempt to fill in an address from the given value.
349///
350bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
351 const User *U = NULL__null;
352 unsigned Opcode = Instruction::UserOp1;
353 if (const Instruction *I = dyn_cast<Instruction>(V)) {
354 // Don't walk into other basic blocks; it's possible we haven't
355 // visited them yet, so the instructions may not yet be assigned
356 // virtual registers.
357 if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
358 return false;
359
360 Opcode = I->getOpcode();
361 U = I;
362 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
363 Opcode = C->getOpcode();
364 U = C;
365 }
366
367 if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
368 if (Ty->getAddressSpace() > 255)
369 // Fast instruction selection doesn't support the special
370 // address spaces.
371 return false;
372
373 switch (Opcode) {
374 default: break;
375 case Instruction::BitCast:
376 // Look past bitcasts.
377 return X86SelectAddress(U->getOperand(0), AM);
378
379 case Instruction::IntToPtr:
380 // Look past no-op inttoptrs.
381 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
382 return X86SelectAddress(U->getOperand(0), AM);
383 break;
384
385 case Instruction::PtrToInt:
386 // Look past no-op ptrtoints.
387 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
388 return X86SelectAddress(U->getOperand(0), AM);
389 break;
390
391 case Instruction::Alloca: {
392 // Do static allocas.
393 const AllocaInst *A = cast<AllocaInst>(V);
394 DenseMap<const AllocaInst*, int>::iterator SI =
395 FuncInfo.StaticAllocaMap.find(A);
396 if (SI != FuncInfo.StaticAllocaMap.end()) {
397 AM.BaseType = X86AddressMode::FrameIndexBase;
398 AM.Base.FrameIndex = SI->second;
399 return true;
400 }
401 break;
402 }
403
404 case Instruction::Add: {
405 // Adds of constants are common and easy enough.
406 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
407 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
408 // They have to fit in the 32-bit signed displacement field though.
409 if (isInt<32>(Disp)) {
410 AM.Disp = (uint32_t)Disp;
411 return X86SelectAddress(U->getOperand(0), AM);
412 }
413 }
414 break;
415 }
416
417 case Instruction::GetElementPtr: {
418 X86AddressMode SavedAM = AM;
419
420 // Pattern-match simple GEPs.
421 uint64_t Disp = (int32_t)AM.Disp;
422 unsigned IndexReg = AM.IndexReg;
423 unsigned Scale = AM.Scale;
424 gep_type_iterator GTI = gep_type_begin(U);
425 // Iterate through the indices, folding what we can. Constants can be
426 // folded, and one dynamic index can be handled, if the scale is supported.
427 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
428 i != e; ++i, ++GTI) {
429 const Value *Op = *i;
430 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
431 const StructLayout *SL = TD.getStructLayout(STy);
432 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
433 Disp += SL->getElementOffset(Idx);
434 } else {
435 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
436 SmallVector<const Value *, 4> Worklist;
437 Worklist.push_back(Op);
438 do {
439 Op = Worklist.pop_back_val();
440 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
441 // Constant-offset addressing.
442 Disp += CI->getSExtValue() * S;
443 } else if (isa<AddOperator>(Op) &&
444 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
445 // An add with a constant operand. Fold the constant.
446 ConstantInt *CI =
447 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
448 Disp += CI->getSExtValue() * S;
449 // Add the other operand back to the work list.
450 Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
451 } else if (IndexReg == 0 &&
452 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
453 (S == 1 || S == 2 || S == 4 || S == 8)) {
454 // Scaled-index addressing.
455 Scale = S;
456 IndexReg = getRegForGEPIndex(Op).first;
457 if (IndexReg == 0)
458 return false;
459 } else
460 // Unsupported.
461 goto unsupported_gep;
462 } while (!Worklist.empty());
463 }
464 }
465 // Check for displacement overflow.
466 if (!isInt<32>(Disp))
467 break;
468 // Ok, the GEP indices were covered by constant-offset and scaled-index
469 // addressing. Update the address state and move on to examining the base.
470 AM.IndexReg = IndexReg;
471 AM.Scale = Scale;
472 AM.Disp = (uint32_t)Disp;
473 if (X86SelectAddress(U->getOperand(0), AM))
474 return true;
475
476 // If we couldn't merge the sub value into this addr mode, revert back to
477 // our address and just match the value instead of completely failing.
478 AM = SavedAM;
479 break;
480 unsupported_gep:
481 // Ok, the GEP indices weren't all covered.
482 break;
483 }
484 }
485
486 // Handle constant address.
487 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
488 // Can't handle alternate code models yet.
489 if (TM.getCodeModel() != CodeModel::Small)
490 return false;
491
492 // RIP-relative addresses can't have additional register operands.
493 if (Subtarget->isPICStyleRIPRel() &&
494 (AM.Base.Reg != 0 || AM.IndexReg != 0))
495 return false;
496
497 // Can't handle TLS yet.
498 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
499 if (GVar->isThreadLocal())
500 return false;
501
502 // Okay, we've committed to selecting this global. Set up the basic address.
503 AM.GV = GV;
504
505 // Allow the subtarget to classify the global.
506 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
507
508 // If this reference is relative to the pic base, set it now.
509 if (isGlobalRelativeToPICBase(GVFlags)) {
510 // FIXME: How do we know Base.Reg is free??
511 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
512 }
513
514 // Unless the ABI requires an extra load, return a direct reference to
515 // the global.
516 if (!isGlobalStubReference(GVFlags)) {
517 if (Subtarget->isPICStyleRIPRel()) {
518 // Use rip-relative addressing if we can. Above we verified that the
519 // base and index registers are unused.
520 assert(AM.Base.Reg == 0 && AM.IndexReg == 0)((AM.Base.Reg == 0 && AM.IndexReg == 0) ? static_cast
<void> (0) : __assert_fail ("AM.Base.Reg == 0 && AM.IndexReg == 0"
, "llvm/lib/Target/X86/X86FastISel.cpp", 520, __PRETTY_FUNCTION__
))
;
521 AM.Base.Reg = X86::RIP;
522 }
523 AM.GVOpFlags = GVFlags;
524 return true;
525 }
526
527 // Ok, we need to do a load from a stub. If we've already loaded from this
528 // stub, reuse the loaded pointer, otherwise emit the load now.
529 DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
530 unsigned LoadReg;
531 if (I != LocalValueMap.end() && I->second != 0) {
532 LoadReg = I->second;
533 } else {
534 // Issue load from stub.
535 unsigned Opc = 0;
536 const TargetRegisterClass *RC = NULL__null;
537 X86AddressMode StubAM;
538 StubAM.Base.Reg = AM.Base.Reg;
539 StubAM.GV = GV;
540 StubAM.GVOpFlags = GVFlags;
541
542 // Prepare for inserting code in the local-value area.
543 SavePoint SaveInsertPt = enterLocalValueArea();
544
545 if (TLI.getPointerTy() == MVT::i64) {
546 Opc = X86::MOV64rm;
547 RC = X86::GR64RegisterClass;
548
549 if (Subtarget->isPICStyleRIPRel())
550 StubAM.Base.Reg = X86::RIP;
551 } else {
552 Opc = X86::MOV32rm;
553 RC = X86::GR32RegisterClass;
554 }
555
556 LoadReg = createResultReg(RC);
557 MachineInstrBuilder LoadMI =
558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
559 addFullAddress(LoadMI, StubAM);
560
561 // Ok, back to normal mode.
562 leaveLocalValueArea(SaveInsertPt);
563
564 // Prevent loading GV stub multiple times in same MBB.
565 LocalValueMap[V] = LoadReg;
566 }
567
568 // Now construct the final address. Note that the Disp, Scale,
569 // and Index values may already be set here.
570 AM.Base.Reg = LoadReg;
571 AM.GV = 0;
572 return true;
573 }
574
575 // If all else fails, try to materialize the value in a register.
576 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
577 if (AM.Base.Reg == 0) {
578 AM.Base.Reg = getRegForValue(V);
579 return AM.Base.Reg != 0;
580 }
581 if (AM.IndexReg == 0) {
582 assert(AM.Scale == 1 && "Scale with no index!")((AM.Scale == 1 && "Scale with no index!") ? static_cast
<void> (0) : __assert_fail ("AM.Scale == 1 && \"Scale with no index!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 582, __PRETTY_FUNCTION__
))
;
583 AM.IndexReg = getRegForValue(V);
584 return AM.IndexReg != 0;
585 }
586 }
587
588 return false;
589}
590
591/// X86SelectCallAddress - Attempt to fill in an address from the given value.
592///
593bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
594 const User *U = NULL__null;
595 unsigned Opcode = Instruction::UserOp1;
596 if (const Instruction *I = dyn_cast<Instruction>(V)) {
597 Opcode = I->getOpcode();
598 U = I;
599 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
600 Opcode = C->getOpcode();
601 U = C;
602 }
603
604 switch (Opcode) {
605 default: break;
606 case Instruction::BitCast:
607 // Look past bitcasts.
608 return X86SelectCallAddress(U->getOperand(0), AM);
609
610 case Instruction::IntToPtr:
611 // Look past no-op inttoptrs.
612 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
613 return X86SelectCallAddress(U->getOperand(0), AM);
614 break;
615
616 case Instruction::PtrToInt:
617 // Look past no-op ptrtoints.
618 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
619 return X86SelectCallAddress(U->getOperand(0), AM);
620 break;
621 }
622
623 // Handle constant address.
624 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
625 // Can't handle alternate code models yet.
626 if (TM.getCodeModel() != CodeModel::Small)
627 return false;
628
629 // RIP-relative addresses can't have additional register operands.
630 if (Subtarget->isPICStyleRIPRel() &&
631 (AM.Base.Reg != 0 || AM.IndexReg != 0))
632 return false;
633
634 // Can't handle TLS or DLLImport.
635 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
636 if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
637 return false;
638
639 // Okay, we've committed to selecting this global. Set up the basic address.
640 AM.GV = GV;
641
642 // No ABI requires an extra load for anything other than DLLImport, which
643 // we rejected above. Return a direct reference to the global.
644 if (Subtarget->isPICStyleRIPRel()) {
645 // Use rip-relative addressing if we can. Above we verified that the
646 // base and index registers are unused.
647 assert(AM.Base.Reg == 0 && AM.IndexReg == 0)((AM.Base.Reg == 0 && AM.IndexReg == 0) ? static_cast
<void> (0) : __assert_fail ("AM.Base.Reg == 0 && AM.IndexReg == 0"
, "llvm/lib/Target/X86/X86FastISel.cpp", 647, __PRETTY_FUNCTION__
))
;
648 AM.Base.Reg = X86::RIP;
649 } else if (Subtarget->isPICStyleStubPIC()) {
650 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
651 } else if (Subtarget->isPICStyleGOT()) {
652 AM.GVOpFlags = X86II::MO_GOTOFF;
653 }
654
655 return true;
656 }
657
658 // If all else fails, try to materialize the value in a register.
659 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
660 if (AM.Base.Reg == 0) {
661 AM.Base.Reg = getRegForValue(V);
662 return AM.Base.Reg != 0;
663 }
664 if (AM.IndexReg == 0) {
665 assert(AM.Scale == 1 && "Scale with no index!")((AM.Scale == 1 && "Scale with no index!") ? static_cast
<void> (0) : __assert_fail ("AM.Scale == 1 && \"Scale with no index!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 665, __PRETTY_FUNCTION__
))
;
666 AM.IndexReg = getRegForValue(V);
667 return AM.IndexReg != 0;
668 }
669 }
670
671 return false;
672}
673
674
675/// X86SelectStore - Select and emit code to implement store instructions.
676bool X86FastISel::X86SelectStore(const Instruction *I) {
677 EVT VT;
678 if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
679 return false;
680
681 X86AddressMode AM;
682 if (!X86SelectAddress(I->getOperand(1), AM))
683 return false;
684
685 return X86FastEmitStore(VT, I->getOperand(0), AM);
686}
687
688/// X86SelectRet - Select and emit code to implement ret instructions.
689bool X86FastISel::X86SelectRet(const Instruction *I) {
690 const ReturnInst *Ret = cast<ReturnInst>(I);
691 const Function &F = *I->getParent()->getParent();
692
693 if (!FuncInfo.CanLowerReturn)
694 return false;
695
696 CallingConv::ID CC = F.getCallingConv();
697 if (CC != CallingConv::C &&
698 CC != CallingConv::Fast &&
699 CC != CallingConv::X86_FastCall)
700 return false;
701
702 if (Subtarget->isTargetWin64())
703 return false;
704
705 // Don't handle popping bytes on return for now.
706 if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
707 ->getBytesToPopOnReturn() != 0)
708 return 0;
709
710 // fastcc with -tailcallopt is intended to provide a guaranteed
711 // tail call optimization. Fastisel doesn't know how to do that.
712 if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
713 return false;
714
715 // Let SDISel handle vararg functions.
716 if (F.isVarArg())
717 return false;
718
719 if (Ret->getNumOperands() > 0) {
720 SmallVector<ISD::OutputArg, 4> Outs;
721 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
722 Outs, TLI);
723
724 // Analyze operands of the call, assigning locations to each operand.
725 SmallVector<CCValAssign, 16> ValLocs;
726 CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
727 CCInfo.AnalyzeReturn(Outs, CCAssignFnForRet(CC));
728
729 const Value *RV = Ret->getOperand(0);
730 unsigned Reg = getRegForValue(RV);
731 if (Reg == 0)
732 return false;
733
734 // Only handle a single return value for now.
735 if (ValLocs.size() != 1)
736 return false;
737
738 CCValAssign &VA = ValLocs[0];
739
740 // Don't bother handling odd stuff for now.
741 if (VA.getLocInfo() != CCValAssign::Full)
742 return false;
743 // Only handle register returns for now.
744 if (!VA.isRegLoc())
745 return false;
746 // TODO: For now, don't try to handle cases where getLocInfo()
747 // says Full but the types don't match.
748 if (VA.getValVT() != TLI.getValueType(RV->getType()))
749 return false;
750
751 // The calling-convention tables for x87 returns don't tell
752 // the whole story.
753 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
754 return false;
755
756 // Make the copy.
757 unsigned SrcReg = Reg + VA.getValNo();
758 unsigned DstReg = VA.getLocReg();
759 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
760 // Avoid a cross-class copy. This is very unlikely.
761 if (!SrcRC->contains(DstReg))
762 return false;
763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
764 DstReg).addReg(SrcReg);
765
766 // Mark the register as live out of the function.
767 MRI.addLiveOut(VA.getLocReg());
768 }
769
770 // Now emit the RET.
771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
772 return true;
773}
774
775/// X86SelectLoad - Select and emit code to implement load instructions.
776///
777bool X86FastISel::X86SelectLoad(const Instruction *I) {
778 EVT VT;
779 if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
780 return false;
781
782 X86AddressMode AM;
783 if (!X86SelectAddress(I->getOperand(0), AM))
784 return false;
785
786 unsigned ResultReg = 0;
787 if (X86FastEmitLoad(VT, AM, ResultReg)) {
788 UpdateValueMap(I, ResultReg);
789 return true;
790 }
791 return false;
792}
793
794static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
795 switch (VT.getSimpleVT().SimpleTy) {
796 default: return 0;
797 case MVT::i8: return X86::CMP8rr;
798 case MVT::i16: return X86::CMP16rr;
799 case MVT::i32: return X86::CMP32rr;
800 case MVT::i64: return X86::CMP64rr;
801 case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0;
802 case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0;
803 }
804}
805
806/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
807/// of the comparison, return an opcode that works for the compare (e.g.
808/// CMP32ri) otherwise return 0.
809static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
810 switch (VT.getSimpleVT().SimpleTy) {
811 // Otherwise, we can't fold the immediate into this comparison.
812 default: return 0;
813 case MVT::i8: return X86::CMP8ri;
814 case MVT::i16: return X86::CMP16ri;
815 case MVT::i32: return X86::CMP32ri;
816 case MVT::i64:
817 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
818 // field.
819 if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
820 return X86::CMP64ri32;
821 return 0;
822 }
823}
824
825bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
826 EVT VT) {
827 unsigned Op0Reg = getRegForValue(Op0);
828 if (Op0Reg == 0) return false;
829
830 // Handle 'null' like i32/i64 0.
831 if (isa<ConstantPointerNull>(Op1))
832 Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
833
834 // We have two options: compare with register or immediate. If the RHS of
835 // the compare is an immediate that we can fold into this compare, use
836 // CMPri, otherwise use CMPrr.
837 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
838 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
840 .addReg(Op0Reg)
841 .addImm(Op1C->getSExtValue());
842 return true;
843 }
844 }
845
846 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
847 if (CompareOpc == 0) return false;
848
849 unsigned Op1Reg = getRegForValue(Op1);
850 if (Op1Reg == 0) return false;
851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
852 .addReg(Op0Reg)
853 .addReg(Op1Reg);
854
855 return true;
856}
857
858bool X86FastISel::X86SelectCmp(const Instruction *I) {
859 const CmpInst *CI = cast<CmpInst>(I);
860
861 EVT VT;
862 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
863 return false;
864
865 unsigned ResultReg = createResultReg(&X86::GR8RegClass);
866 unsigned SetCCOpc;
867 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
868 switch (CI->getPredicate()) {
869 case CmpInst::FCMP_OEQ: {
870 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
871 return false;
872
873 unsigned EReg = createResultReg(&X86::GR8RegClass);
874 unsigned NPReg = createResultReg(&X86::GR8RegClass);
875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
876 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
877 TII.get(X86::SETNPr), NPReg);
878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
879 TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
880 UpdateValueMap(I, ResultReg);
881 return true;
882 }
883 case CmpInst::FCMP_UNE: {
884 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
885 return false;
886
887 unsigned NEReg = createResultReg(&X86::GR8RegClass);
888 unsigned PReg = createResultReg(&X86::GR8RegClass);
889 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
890 TII.get(X86::SETNEr), NEReg);
891 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
892 TII.get(X86::SETPr), PReg);
893 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
894 TII.get(X86::OR8rr), ResultReg)
895 .addReg(PReg).addReg(NEReg);
896 UpdateValueMap(I, ResultReg);
897 return true;
898 }
899 case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
900 case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
901 case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break;
902 case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break;
903 case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
904 case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
905 case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break;
906 case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
907 case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break;
908 case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
909 case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
910 case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
911
912 case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
913 case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
914 case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
915 case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
916 case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
917 case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
918 case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break;
919 case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
920 case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break;
921 case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
922 default:
923 return false;
924 }
925
926 const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
927 if (SwapArgs)
928 std::swap(Op0, Op1);
929
930 // Emit a compare of Op0/Op1.
931 if (!X86FastEmitCompare(Op0, Op1, VT))
932 return false;
933
934 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
935 UpdateValueMap(I, ResultReg);
936 return true;
937}
938
939bool X86FastISel::X86SelectZExt(const Instruction *I) {
940 // Handle zero-extension from i1 to i8, which is common.
941 if (I->getType()->isIntegerTy(8) &&
942 I->getOperand(0)->getType()->isIntegerTy(1)) {
943 unsigned ResultReg = getRegForValue(I->getOperand(0));
944 if (ResultReg == 0) return false;
945 // Set the high bits to zero.
946 ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
947 if (ResultReg == 0) return false;
948 UpdateValueMap(I, ResultReg);
949 return true;
950 }
951
952 return false;
953}
954
955
956bool X86FastISel::X86SelectBranch(const Instruction *I) {
957 // Unconditional branches are selected by tablegen-generated code.
958 // Handle a conditional branch.
959 const BranchInst *BI = cast<BranchInst>(I);
960 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
961 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
962
963 // Fold the common case of a conditional branch with a comparison
964 // in the same block (values defined on other blocks may not have
965 // initialized registers).
966 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
967 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
968 EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
969
970 // Try to take advantage of fallthrough opportunities.
971 CmpInst::Predicate Predicate = CI->getPredicate();
972 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
973 std::swap(TrueMBB, FalseMBB);
974 Predicate = CmpInst::getInversePredicate(Predicate);
975 }
976
977 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
978 unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
979
980 switch (Predicate) {
981 case CmpInst::FCMP_OEQ:
982 std::swap(TrueMBB, FalseMBB);
983 Predicate = CmpInst::FCMP_UNE;
984 // FALL THROUGH
985 case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
986 case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
987 case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
988 case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break;
989 case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break;
990 case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
991 case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
992 case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break;
993 case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
994 case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break;
995 case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break;
996 case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
997 case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
998
999 case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
1000 case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1001 case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
1002 case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1003 case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
1004 case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1005 case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break;
1006 case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
1007 case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break;
1008 case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
1009 default:
1010 return false;
1011 }
1012
1013 const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1014 if (SwapArgs)
1015 std::swap(Op0, Op1);
1016
1017 // Emit a compare of the LHS and RHS, setting the flags.
1018 if (!X86FastEmitCompare(Op0, Op1, VT))
1019 return false;
1020
1021 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
1022 .addMBB(TrueMBB);
1023
1024 if (Predicate == CmpInst::FCMP_UNE) {
1025 // X86 requires a second branch to handle UNE (and OEQ,
1026 // which is mapped to UNE above).
1027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
1028 .addMBB(TrueMBB);
1029 }
1030
1031 FastEmitBranch(FalseMBB, DL);
1032 FuncInfo.MBB->addSuccessor(TrueMBB);
1033 return true;
1034 }
1035 } else if (ExtractValueInst *EI =
1036 dyn_cast<ExtractValueInst>(BI->getCondition())) {
1037 // Check to see if the branch instruction is from an "arithmetic with
1038 // overflow" intrinsic. The main way these intrinsics are used is:
1039 //
1040 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
1041 // %sum = extractvalue { i32, i1 } %t, 0
1042 // %obit = extractvalue { i32, i1 } %t, 1
1043 // br i1 %obit, label %overflow, label %normal
1044 //
1045 // The %sum and %obit are converted in an ADD and a SETO/SETB before
1046 // reaching the branch. Therefore, we search backwards through the MBB
1047 // looking for the SETO/SETB instruction. If an instruction modifies the
1048 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
1049 // convert the branch into a JO/JB instruction.
1050 if (const IntrinsicInst *CI =
1051 dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
1052 if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
1053 CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
1054 const MachineInstr *SetMI = 0;
1055 unsigned Reg = getRegForValue(EI);
1056
1057 for (MachineBasicBlock::const_reverse_iterator
1058 RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
1059 RI != RE; ++RI) {
1060 const MachineInstr &MI = *RI;
1061
1062 if (MI.definesRegister(Reg)) {
1063 if (MI.isCopy()) {
1064 Reg = MI.getOperand(1).getReg();
1065 continue;
1066 }
1067
1068 SetMI = &MI;
1069 break;
1070 }
1071
1072 const TargetInstrDesc &TID = MI.getDesc();
1073 if (TID.hasUnmodeledSideEffects() ||
1074 TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
1075 break;
1076 }
1077
1078 if (SetMI) {
1079 unsigned OpCode = SetMI->getOpcode();
1080
1081 if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
1082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1083 TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4))
1084 .addMBB(TrueMBB);
1085 FastEmitBranch(FalseMBB, DL);
1086 FuncInfo.MBB->addSuccessor(TrueMBB);
1087 return true;
1088 }
1089 }
1090 }
1091 }
1092 }
1093
1094 // Otherwise do a clumsy setcc and re-test it.
1095 unsigned OpReg = getRegForValue(BI->getCondition());
1096 if (OpReg == 0) return false;
1097
1098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1099 .addReg(OpReg).addReg(OpReg);
1100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1101 .addMBB(TrueMBB);
1102 FastEmitBranch(FalseMBB, DL);
1103 FuncInfo.MBB->addSuccessor(TrueMBB);
1104 return true;
1105}
1106
1107bool X86FastISel::X86SelectShift(const Instruction *I) {
1108 unsigned CReg = 0, OpReg = 0, OpImm = 0;
1109 const TargetRegisterClass *RC = NULL__null;
1110 if (I->getType()->isIntegerTy(8)) {
1111 CReg = X86::CL;
1112 RC = &X86::GR8RegClass;
1113 switch (I->getOpcode()) {
1114 case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
1115 case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
1116 case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
1117 default: return false;
1118 }
1119 } else if (I->getType()->isIntegerTy(16)) {
1120 CReg = X86::CX;
1121 RC = &X86::GR16RegClass;
1122 switch (I->getOpcode()) {
1123 case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
1124 case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
1125 case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
1126 default: return false;
1127 }
1128 } else if (I->getType()->isIntegerTy(32)) {
1129 CReg = X86::ECX;
1130 RC = &X86::GR32RegClass;
1131 switch (I->getOpcode()) {
1132 case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
1133 case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
1134 case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
1135 default: return false;
1136 }
1137 } else if (I->getType()->isIntegerTy(64)) {
1138 CReg = X86::RCX;
1139 RC = &X86::GR64RegClass;
1140 switch (I->getOpcode()) {
1141 case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
1142 case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
1143 case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
1144 default: return false;
1145 }
1146 } else {
1147 return false;
1148 }
1149
1150 EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1151 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1152 return false;
1153
1154 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1155 if (Op0Reg == 0) return false;
1156
1157 // Fold immediate in shl(x,3).
1158 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1159 unsigned ResultReg = createResultReg(RC);
1160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
1161 ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1162 UpdateValueMap(I, ResultReg);
1163 return true;
1164 }
1165
1166 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1167 if (Op1Reg == 0) return false;
1168 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1169 CReg).addReg(Op1Reg);
1170
1171 // The shift instruction uses X86::CL. If we defined a super-register
1172 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1173 if (CReg != X86::CL)
1174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1175 TII.get(TargetOpcode::KILL), X86::CL)
1176 .addReg(CReg, RegState::Kill);
1177
1178 unsigned ResultReg = createResultReg(RC);
1179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1180 .addReg(Op0Reg);
1181 UpdateValueMap(I, ResultReg);
1182 return true;
1183}
1184
1185bool X86FastISel::X86SelectSelect(const Instruction *I) {
1186 EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1187 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1188 return false;
1189
1190 unsigned Opc = 0;
1191 const TargetRegisterClass *RC = NULL__null;
1192 if (VT.getSimpleVT() == MVT::i16) {
1193 Opc = X86::CMOVE16rr;
1194 RC = &X86::GR16RegClass;
1195 } else if (VT.getSimpleVT() == MVT::i32) {
1196 Opc = X86::CMOVE32rr;
1197 RC = &X86::GR32RegClass;
1198 } else if (VT.getSimpleVT() == MVT::i64) {
1199 Opc = X86::CMOVE64rr;
1200 RC = &X86::GR64RegClass;
1201 } else {
1202 return false;
1203 }
1204
1205 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1206 if (Op0Reg == 0) return false;
1207 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1208 if (Op1Reg == 0) return false;
1209 unsigned Op2Reg = getRegForValue(I->getOperand(2));
1210 if (Op2Reg == 0) return false;
1211
1212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1213 .addReg(Op0Reg).addReg(Op0Reg);
1214 unsigned ResultReg = createResultReg(RC);
1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1216 .addReg(Op1Reg).addReg(Op2Reg);
1217 UpdateValueMap(I, ResultReg);
1218 return true;
1219}
1220
1221bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1222 // fpext from float to double.
1223 if (Subtarget->hasSSE2() &&
1224 I->getType()->isDoubleTy()) {
1225 const Value *V = I->getOperand(0);
1226 if (V->getType()->isFloatTy()) {
1227 unsigned OpReg = getRegForValue(V);
1228 if (OpReg == 0) return false;
1229 unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1231 TII.get(X86::CVTSS2SDrr), ResultReg)
1232 .addReg(OpReg);
1233 UpdateValueMap(I, ResultReg);
1234 return true;
1235 }
1236 }
1237
1238 return false;
1239}
1240
1241bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1242 if (Subtarget->hasSSE2()) {
1243 if (I->getType()->isFloatTy()) {
1244 const Value *V = I->getOperand(0);
1245 if (V->getType()->isDoubleTy()) {
1246 unsigned OpReg = getRegForValue(V);
1247 if (OpReg == 0) return false;
1248 unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1250 TII.get(X86::CVTSD2SSrr), ResultReg)
1251 .addReg(OpReg);
1252 UpdateValueMap(I, ResultReg);
1253 return true;
1254 }
1255 }
1256 }
1257
1258 return false;
1259}
1260
1261bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1262 if (Subtarget->is64Bit())
1263 // All other cases should be handled by the tblgen generated code.
1264 return false;
1265 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1266 EVT DstVT = TLI.getValueType(I->getType());
1267
1268 // This code only handles truncation to byte right now.
1269 if (DstVT != MVT::i8 && DstVT != MVT::i1)
1270 // All other cases should be handled by the tblgen generated code.
1271 return false;
1272 if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1273 // All other cases should be handled by the tblgen generated code.
1274 return false;
1275
1276 unsigned InputReg = getRegForValue(I->getOperand(0));
1277 if (!InputReg)
1278 // Unhandled operand. Halt "fast" selection and bail.
1279 return false;
1280
1281 // First issue a copy to GR16_ABCD or GR32_ABCD.
1282 const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1283 ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1284 unsigned CopyReg = createResultReg(CopyRC);
1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1286 CopyReg).addReg(InputReg);
1287
1288 // Then issue an extract_subreg.
1289 unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1290 CopyReg, /*Kill=*/true,
1291 X86::sub_8bit);
1292 if (!ResultReg)
1293 return false;
1294
1295 UpdateValueMap(I, ResultReg);
1296 return true;
1297}
1298
1299bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
1300 const ExtractValueInst *EI = cast<ExtractValueInst>(I);
1301 const Value *Agg = EI->getAggregateOperand();
1302
1303 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1304 switch (CI->getIntrinsicID()) {
1305 default: break;
1306 case Intrinsic::sadd_with_overflow:
1307 case Intrinsic::uadd_with_overflow: {
1308 // Cheat a little. We know that the registers for "add" and "seto" are
1309 // allocated sequentially. However, we only keep track of the register
1310 // for "add" in the value map. Use extractvalue's index to get the
1311 // correct register for "seto".
1312 unsigned OpReg = getRegForValue(Agg);
1313 if (OpReg == 0)
1314 return false;
1315 UpdateValueMap(I, OpReg + *EI->idx_begin());
1316 return true;
1317 }
1318 }
1319 }
1320
1321 return false;
1322}
1323
1324bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1325 // FIXME: Handle more intrinsics.
1326 switch (I.getIntrinsicID()) {
1327 default: return false;
1328 case Intrinsic::stackprotector: {
1329 // Emit code inline code to store the stack guard onto the stack.
1330 EVT PtrTy = TLI.getPointerTy();
1331
1332 const Value *Op1 = I.getArgOperand(0); // The guard's value.
1333 const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1334
1335 // Grab the frame index.
1336 X86AddressMode AM;
1337 if (!X86SelectAddress(Slot, AM)) return false;
1338
1339 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1340
1341 return true;
1342 }
1343 case Intrinsic::objectsize: {
1344 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
1345 const Type *Ty = I.getCalledFunction()->getReturnType();
1346
1347 assert(CI && "Non-constant type in Intrinsic::objectsize?")((CI && "Non-constant type in Intrinsic::objectsize?"
) ? static_cast<void> (0) : __assert_fail ("CI && \"Non-constant type in Intrinsic::objectsize?\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1347, __PRETTY_FUNCTION__
))
;
1348
1349 EVT VT;
1350 if (!isTypeLegal(Ty, VT))
1351 return false;
1352
1353 unsigned OpC = 0;
1354 if (VT == MVT::i32)
1355 OpC = X86::MOV32ri;
1356 else if (VT == MVT::i64)
1357 OpC = X86::MOV64ri;
1358 else
1359 return false;
1360
1361 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1362 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
1363 addImm(CI->isZero() ? -1ULL : 0);
1364 UpdateValueMap(&I, ResultReg);
1365 return true;
1366 }
1367 case Intrinsic::dbg_declare: {
1368 const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1369 X86AddressMode AM;
1370 assert(DI->getAddress() && "Null address should be checked earlier!")((DI->getAddress() && "Null address should be checked earlier!"
) ? static_cast<void> (0) : __assert_fail ("DI->getAddress() && \"Null address should be checked earlier!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1370, __PRETTY_FUNCTION__
))
;
1371 if (!X86SelectAddress(DI->getAddress(), AM))
1372 return false;
1373 const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1374 // FIXME may need to add RegState::Debug to any registers produced,
1375 // although ESP/EBP should be the only ones at the moment.
1376 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1377 addImm(0).addMetadata(DI->getVariable());
1378 return true;
1379 }
1380 case Intrinsic::trap: {
1381 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1382 return true;
1383 }
1384 case Intrinsic::sadd_with_overflow:
1385 case Intrinsic::uadd_with_overflow: {
1386 // Replace "add with overflow" intrinsics with an "add" instruction followed
1387 // by a seto/setc instruction. Later on, when the "extractvalue"
1388 // instructions are encountered, we use the fact that two registers were
1389 // created sequentially to get the correct registers for the "sum" and the
1390 // "overflow bit".
1391 const Function *Callee = I.getCalledFunction();
1392 const Type *RetTy =
1393 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1394
1395 EVT VT;
1396 if (!isTypeLegal(RetTy, VT))
1397 return false;
1398
1399 const Value *Op1 = I.getArgOperand(0);
1400 const Value *Op2 = I.getArgOperand(1);
1401 unsigned Reg1 = getRegForValue(Op1);
1402 unsigned Reg2 = getRegForValue(Op2);
1403
1404 if (Reg1 == 0 || Reg2 == 0)
1405 // FIXME: Handle values *not* in registers.
1406 return false;
1407
1408 unsigned OpC = 0;
1409 if (VT == MVT::i32)
1410 OpC = X86::ADD32rr;
1411 else if (VT == MVT::i64)
1412 OpC = X86::ADD64rr;
1413 else
1414 return false;
1415
1416 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1418 .addReg(Reg1).addReg(Reg2);
1419 unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1420
1421 // If the add with overflow is an intra-block value then we just want to
1422 // create temporaries for it like normal. If it is a cross-block value then
1423 // UpdateValueMap will return the cross-block register used. Since we
1424 // *really* want the value to be live in the register pair known by
1425 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1426 // the cross block case. In the non-cross-block case, we should just make
1427 // another register for the value.
1428 if (DestReg1 != ResultReg)
1429 ResultReg = DestReg1+1;
1430 else
1431 ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1432
1433 unsigned Opc = X86::SETBr;
1434 if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1435 Opc = X86::SETOr;
1436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
1437 return true;
1438 }
1439 }
1440}
1441
1442bool X86FastISel::X86SelectCall(const Instruction *I) {
1443 const CallInst *CI = cast<CallInst>(I);
1444 const Value *Callee = CI->getCalledValue();
1445
1446 // Can't handle inline asm yet.
1447 if (isa<InlineAsm>(Callee))
1448 return false;
1449
1450 // Handle intrinsic calls.
1451 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1452 return X86VisitIntrinsicCall(*II);
1453
1454 // Handle only C and fastcc calling conventions for now.
1455 ImmutableCallSite CS(CI);
1456 CallingConv::ID CC = CS.getCallingConv();
1457 if (CC != CallingConv::C &&
1458 CC != CallingConv::Fast &&
1459 CC != CallingConv::X86_FastCall)
1460 return false;
1461
1462 // fastcc with -tailcallopt is intended to provide a guaranteed
1463 // tail call optimization. Fastisel doesn't know how to do that.
1464 if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1465 return false;
1466
1467 // Let SDISel handle vararg functions.
1468 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1469 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1470 if (FTy->isVarArg())
1471 return false;
1472
1473 // Fast-isel doesn't know about callee-pop yet.
1474 if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
1475 return false;
1476
1477 // Handle *simple* calls for now.
1478 const Type *RetTy = CS.getType();
1479 EVT RetVT;
1480 if (RetTy->isVoidTy())
1481 RetVT = MVT::isVoid;
1482 else if (!isTypeLegal(RetTy, RetVT, true))
1483 return false;
1484
1485 // Materialize callee address in a register. FIXME: GV address can be
1486 // handled with a CALLpcrel32 instead.
1487 X86AddressMode CalleeAM;
1488 if (!X86SelectCallAddress(Callee, CalleeAM))
1489 return false;
1490 unsigned CalleeOp = 0;
1491 const GlobalValue *GV = 0;
1492 if (CalleeAM.GV != 0) {
1493 GV = CalleeAM.GV;
1494 } else if (CalleeAM.Base.Reg != 0) {
1495 CalleeOp = CalleeAM.Base.Reg;
1496 } else
1497 return false;
1498
1499 // Allow calls which produce i1 results.
1500 bool AndToI1 = false;
1501 if (RetVT == MVT::i1) {
1502 RetVT = MVT::i8;
1503 AndToI1 = true;
1504 }
1505
1506 // Deal with call operands first.
1507 SmallVector<const Value *, 8> ArgVals;
1508 SmallVector<unsigned, 8> Args;
1509 SmallVector<EVT, 8> ArgVTs;
1510 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1511 Args.reserve(CS.arg_size());
1512 ArgVals.reserve(CS.arg_size());
1513 ArgVTs.reserve(CS.arg_size());
1514 ArgFlags.reserve(CS.arg_size());
1515 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1516 i != e; ++i) {
1517 unsigned Arg = getRegForValue(*i);
1518 if (Arg == 0)
1519 return false;
1520 ISD::ArgFlagsTy Flags;
1521 unsigned AttrInd = i - CS.arg_begin() + 1;
1522 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1523 Flags.setSExt();
1524 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1525 Flags.setZExt();
1526
1527 // FIXME: Only handle *easy* calls for now.
1528 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1529 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1530 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1531 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1532 return false;
1533
1534 const Type *ArgTy = (*i)->getType();
1535 EVT ArgVT;
1536 if (!isTypeLegal(ArgTy, ArgVT))
1537 return false;
1538 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1539 Flags.setOrigAlign(OriginalAlignment);
1540
1541 Args.push_back(Arg);
1542 ArgVals.push_back(*i);
1543 ArgVTs.push_back(ArgVT);
1544 ArgFlags.push_back(Flags);
1545 }
1546
1547 // Analyze operands of the call, assigning locations to each operand.
1548 SmallVector<CCValAssign, 16> ArgLocs;
1549 CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1550
1551 // Allocate shadow area for Win64
1552 if (Subtarget->isTargetWin64()) {
1553 CCInfo.AllocateStack(32, 8);
1554 }
1555
1556 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1557
1558 // Get a count of how many bytes are to be pushed on the stack.
1559 unsigned NumBytes = CCInfo.getNextStackOffset();
1560
1561 // Issue CALLSEQ_START
1562 unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1563 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1564 .addImm(NumBytes);
1565
1566 // Process argument: walk the register/memloc assignments, inserting
1567 // copies / loads.
1568 SmallVector<unsigned, 4> RegArgs;
1569 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1570 CCValAssign &VA = ArgLocs[i];
1571 unsigned Arg = Args[VA.getValNo()];
1572 EVT ArgVT = ArgVTs[VA.getValNo()];
1573
1574 // Promote the value if needed.
1575 switch (VA.getLocInfo()) {
1576 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/X86/X86FastISel.cpp"
, 1576)
;
1577 case CCValAssign::Full: break;
1578 case CCValAssign::SExt: {
1579 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1580 Arg, ArgVT, Arg);
1581 assert(Emitted && "Failed to emit a sext!")((Emitted && "Failed to emit a sext!") ? static_cast<
void> (0) : __assert_fail ("Emitted && \"Failed to emit a sext!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1581, __PRETTY_FUNCTION__
))
; Emitted=Emitted;
1582 Emitted = true;
Value stored to 'Emitted' is never read
1583 ArgVT = VA.getLocVT();
1584 break;
1585 }
1586 case CCValAssign::ZExt: {
1587 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1588 Arg, ArgVT, Arg);
1589 assert(Emitted && "Failed to emit a zext!")((Emitted && "Failed to emit a zext!") ? static_cast<
void> (0) : __assert_fail ("Emitted && \"Failed to emit a zext!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1589, __PRETTY_FUNCTION__
))
; Emitted=Emitted;
1590 Emitted = true;
1591 ArgVT = VA.getLocVT();
1592 break;
1593 }
1594 case CCValAssign::AExt: {
1595 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1596 Arg, ArgVT, Arg);
1597 if (!Emitted)
1598 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1599 Arg, ArgVT, Arg);
1600 if (!Emitted)
1601 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1602 Arg, ArgVT, Arg);
1603
1604 assert(Emitted && "Failed to emit a aext!")((Emitted && "Failed to emit a aext!") ? static_cast<
void> (0) : __assert_fail ("Emitted && \"Failed to emit a aext!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1604, __PRETTY_FUNCTION__
))
; Emitted=Emitted;
1605 ArgVT = VA.getLocVT();
1606 break;
1607 }
1608 case CCValAssign::BCvt: {
1609 unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1610 ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1611 assert(BC != 0 && "Failed to emit a bitcast!")((BC != 0 && "Failed to emit a bitcast!") ? static_cast
<void> (0) : __assert_fail ("BC != 0 && \"Failed to emit a bitcast!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1611, __PRETTY_FUNCTION__
))
;
1612 Arg = BC;
1613 ArgVT = VA.getLocVT();
1614 break;
1615 }
1616 }
1617
1618 if (VA.isRegLoc()) {
1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1620 VA.getLocReg()).addReg(Arg);
1621 RegArgs.push_back(VA.getLocReg());
1622 } else {
1623 unsigned LocMemOffset = VA.getLocMemOffset();
1624 X86AddressMode AM;
1625 AM.Base.Reg = StackPtr;
1626 AM.Disp = LocMemOffset;
1627 const Value *ArgVal = ArgVals[VA.getValNo()];
1628
1629 // If this is a really simple value, emit this with the Value* version of
1630 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1631 // can cause us to reevaluate the argument.
1632 if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1633 X86FastEmitStore(ArgVT, ArgVal, AM);
1634 else
1635 X86FastEmitStore(ArgVT, Arg, AM);
1636 }
1637 }
1638
1639 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1640 // GOT pointer.
1641 if (Subtarget->isPICStyleGOT()) {
1642 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1644 X86::EBX).addReg(Base);
1645 }
1646
1647 // Issue the call.
1648 MachineInstrBuilder MIB;
1649 if (CalleeOp) {
1650 // Register-indirect call.
1651 unsigned CallOpc;
1652 if (Subtarget->isTargetWin64())
1653 CallOpc = X86::WINCALL64r;
1654 else if (Subtarget->is64Bit())
1655 CallOpc = X86::CALL64r;
1656 else
1657 CallOpc = X86::CALL32r;
1658 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1659 .addReg(CalleeOp);
1660
1661 } else {
1662 // Direct call.
1663 assert(GV && "Not a direct call")((GV && "Not a direct call") ? static_cast<void>
(0) : __assert_fail ("GV && \"Not a direct call\"", "llvm/lib/Target/X86/X86FastISel.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 unsigned CallOpc;
1665 if (Subtarget->isTargetWin64())
1666 CallOpc = X86::WINCALL64pcrel32;
1667 else if (Subtarget->is64Bit())
1668 CallOpc = X86::CALL64pcrel32;
1669 else
1670 CallOpc = X86::CALLpcrel32;
1671
1672 // See if we need any target-specific flags on the GV operand.
1673 unsigned char OpFlags = 0;
1674
1675 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1676 // external symbols most go through the PLT in PIC mode. If the symbol
1677 // has hidden or protected visibility, or if it is static or local, then
1678 // we don't need to use the PLT - we can directly call it.
1679 if (Subtarget->isTargetELF() &&
1680 TM.getRelocationModel() == Reloc::PIC_ &&
1681 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1682 OpFlags = X86II::MO_PLT;
1683 } else if (Subtarget->isPICStyleStubAny() &&
1684 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1685 Subtarget->getDarwinVers() < 9) {
1686 // PC-relative references to external symbols should go through $stub,
1687 // unless we're building with the leopard linker or later, which
1688 // automatically synthesizes these stubs.
1689 OpFlags = X86II::MO_DARWIN_STUB;
1690 }
1691
1692
1693 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1694 .addGlobalAddress(GV, 0, OpFlags);
1695 }
1696
1697 // Add an implicit use GOT pointer in EBX.
1698 if (Subtarget->isPICStyleGOT())
1699 MIB.addReg(X86::EBX);
1700
1701 // Add implicit physical register uses to the call.
1702 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1703 MIB.addReg(RegArgs[i]);
1704
1705 // Issue CALLSEQ_END
1706 unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1707 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1708 .addImm(NumBytes).addImm(0);
1709
1710 // Now handle call return value (if any).
1711 SmallVector<unsigned, 4> UsedRegs;
1712 if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1713 SmallVector<CCValAssign, 16> RVLocs;
1714 CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1715 CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1716
1717 // Copy all of the result registers out of their specified physreg.
1718 assert(RVLocs.size() == 1 && "Can't handle multi-value calls!")((RVLocs.size() == 1 && "Can't handle multi-value calls!"
) ? static_cast<void> (0) : __assert_fail ("RVLocs.size() == 1 && \"Can't handle multi-value calls!\""
, "llvm/lib/Target/X86/X86FastISel.cpp", 1718, __PRETTY_FUNCTION__
))
;
1719 EVT CopyVT = RVLocs[0].getValVT();
1720 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1721
1722 // If this is a call to a function that returns an fp value on the x87 fp
1723 // stack, but where we prefer to use the value in xmm registers, copy it
1724 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1725 if ((RVLocs[0].getLocReg() == X86::ST0 ||
1726 RVLocs[0].getLocReg() == X86::ST1) &&
1727 isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1728 CopyVT = MVT::f80;
1729 DstRC = X86::RFP80RegisterClass;
1730 }
1731
1732 unsigned ResultReg = createResultReg(DstRC);
1733 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1734 ResultReg).addReg(RVLocs[0].getLocReg());
1735 UsedRegs.push_back(RVLocs[0].getLocReg());
1736
1737 if (CopyVT != RVLocs[0].getValVT()) {
1738 // Round the F80 the right size, which also moves to the appropriate xmm
1739 // register. This is accomplished by storing the F80 value in memory and
1740 // then loading it back. Ewww...
1741 EVT ResVT = RVLocs[0].getValVT();
1742 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1743 unsigned MemSize = ResVT.getSizeInBits()/8;
1744 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1745 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1746 TII.get(Opc)), FI)
1747 .addReg(ResultReg);
1748 DstRC = ResVT == MVT::f32
1749 ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1750 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1751 ResultReg = createResultReg(DstRC);
1752 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1753 TII.get(Opc), ResultReg), FI);
1754 }
1755
1756 if (AndToI1) {
1757 // Mask out all but lowest bit for some call which produces an i1.
1758 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1760 TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1761 ResultReg = AndResult;
1762 }
1763
1764 UpdateValueMap(I, ResultReg);
1765 }
1766
1767 // Set all unused physreg defs as dead.
1768 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1769
1770 return true;
1771}
1772
1773
1774bool
1775X86FastISel::TargetSelectInstruction(const Instruction *I) {
1776 switch (I->getOpcode()) {
1777 default: break;
1778 case Instruction::Load:
1779 return X86SelectLoad(I);
1780 case Instruction::Store:
1781 return X86SelectStore(I);
1782 case Instruction::Ret:
1783 return X86SelectRet(I);
1784 case Instruction::ICmp:
1785 case Instruction::FCmp:
1786 return X86SelectCmp(I);
1787 case Instruction::ZExt:
1788 return X86SelectZExt(I);
1789 case Instruction::Br:
1790 return X86SelectBranch(I);
1791 case Instruction::Call:
1792 return X86SelectCall(I);
1793 case Instruction::LShr:
1794 case Instruction::AShr:
1795 case Instruction::Shl:
1796 return X86SelectShift(I);
1797 case Instruction::Select:
1798 return X86SelectSelect(I);
1799 case Instruction::Trunc:
1800 return X86SelectTrunc(I);
1801 case Instruction::FPExt:
1802 return X86SelectFPExt(I);
1803 case Instruction::FPTrunc:
1804 return X86SelectFPTrunc(I);
1805 case Instruction::ExtractValue:
1806 return X86SelectExtractValue(I);
1807 case Instruction::IntToPtr: // Deliberate fall-through.
1808 case Instruction::PtrToInt: {
1809 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1810 EVT DstVT = TLI.getValueType(I->getType());
1811 if (DstVT.bitsGT(SrcVT))
1812 return X86SelectZExt(I);
1813 if (DstVT.bitsLT(SrcVT))
1814 return X86SelectTrunc(I);
1815 unsigned Reg = getRegForValue(I->getOperand(0));
1816 if (Reg == 0) return false;
1817 UpdateValueMap(I, Reg);
1818 return true;
1819 }
1820 }
1821
1822 return false;
1823}
1824
1825unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1826 EVT VT;
1827 if (!isTypeLegal(C->getType(), VT))
1828 return false;
1829
1830 // Get opcode and regclass of the output for the given load instruction.
1831 unsigned Opc = 0;
1832 const TargetRegisterClass *RC = NULL__null;
1833 switch (VT.getSimpleVT().SimpleTy) {
1834 default: return false;
1835 case MVT::i8:
1836 Opc = X86::MOV8rm;
1837 RC = X86::GR8RegisterClass;
1838 break;
1839 case MVT::i16:
1840 Opc = X86::MOV16rm;
1841 RC = X86::GR16RegisterClass;
1842 break;
1843 case MVT::i32:
1844 Opc = X86::MOV32rm;
1845 RC = X86::GR32RegisterClass;
1846 break;
1847 case MVT::i64:
1848 // Must be in x86-64 mode.
1849 Opc = X86::MOV64rm;
1850 RC = X86::GR64RegisterClass;
1851 break;
1852 case MVT::f32:
1853 if (Subtarget->hasSSE1()) {
1854 Opc = X86::MOVSSrm;
1855 RC = X86::FR32RegisterClass;
1856 } else {
1857 Opc = X86::LD_Fp32m;
1858 RC = X86::RFP32RegisterClass;
1859 }
1860 break;
1861 case MVT::f64:
1862 if (Subtarget->hasSSE2()) {
1863 Opc = X86::MOVSDrm;
1864 RC = X86::FR64RegisterClass;
1865 } else {
1866 Opc = X86::LD_Fp64m;
1867 RC = X86::RFP64RegisterClass;
1868 }
1869 break;
1870 case MVT::f80:
1871 // No f80 support yet.
1872 return false;
1873 }
1874
1875 // Materialize addresses with LEA instructions.
1876 if (isa<GlobalValue>(C)) {
1877 X86AddressMode AM;
1878 if (X86SelectAddress(C, AM)) {
1879 if (TLI.getPointerTy() == MVT::i32)
1880 Opc = X86::LEA32r;
1881 else
1882 Opc = X86::LEA64r;
1883 unsigned ResultReg = createResultReg(RC);
1884 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1885 TII.get(Opc), ResultReg), AM);
1886 return ResultReg;
1887 }
1888 return 0;
1889 }
1890
1891 // MachineConstantPool wants an explicit alignment.
1892 unsigned Align = TD.getPrefTypeAlignment(C->getType());
1893 if (Align == 0) {
1894 // Alignment of vector types. FIXME!
1895 Align = TD.getTypeAllocSize(C->getType());
1896 }
1897
1898 // x86-32 PIC requires a PIC base register for constant pools.
1899 unsigned PICBase = 0;
1900 unsigned char OpFlag = 0;
1901 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1902 OpFlag = X86II::MO_PIC_BASE_OFFSET;
1903 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1904 } else if (Subtarget->isPICStyleGOT()) {
1905 OpFlag = X86II::MO_GOTOFF;
1906 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1907 } else if (Subtarget->isPICStyleRIPRel() &&
1908 TM.getCodeModel() == CodeModel::Small) {
1909 PICBase = X86::RIP;
1910 }
1911
1912 // Create the load from the constant pool.
1913 unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1914 unsigned ResultReg = createResultReg(RC);
1915 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1916 TII.get(Opc), ResultReg),
1917 MCPOffset, PICBase, OpFlag);
1918
1919 return ResultReg;
1920}
1921
1922unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
1923 // Fail on dynamic allocas. At this point, getRegForValue has already
1924 // checked its CSE maps, so if we're here trying to handle a dynamic
1925 // alloca, we're not going to succeed. X86SelectAddress has a
1926 // check for dynamic allocas, because it's called directly from
1927 // various places, but TargetMaterializeAlloca also needs a check
1928 // in order to avoid recursion between getRegForValue,
1929 // X86SelectAddrss, and TargetMaterializeAlloca.
1930 if (!FuncInfo.StaticAllocaMap.count(C))
1931 return 0;
1932
1933 X86AddressMode AM;
1934 if (!X86SelectAddress(C, AM))
1935 return 0;
1936 unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1937 TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1938 unsigned ResultReg = createResultReg(RC);
1939 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1940 TII.get(Opc), ResultReg), AM);
1941 return ResultReg;
1942}
1943
1944namespace llvm {
1945 llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
1946 return new X86FastISel(funcInfo);
1947 }
1948}