
CSC 495 – Final Programming Challenge — Due Tuesday, April 24

Challenge Problem: Chop Up The Graph

This is your final challenge problem for CSC 495. Unlike earlier problems, there is not a simple
algorithm that will find the correct answer. You will have to combine several strategies that have
come up repeatedly in this class, including efficient data structures, efficient searching, and
possibly others. Note that the underlying problem is NP-hard, so don’t spend a lot of time trying
to come up with an optimal solution — instead, think about heuristics and refining solutions.

Background

Consider the following problem: You have a map of a city, with road segments labeled by the
amount of time it takes a fire truck to traverse them. Your goal is to place fire stations so that
every point in the city can be reached in less than 8 minutes from some fire station. You can
model this as an edge-weighted graph, with edges representing road segments and weights
representing times. Your goal is to mark a subset of the vertices (for fire stations) so that every
vertex has a weighted distance of at most 8 to a marked vertex. Our goal here is to pick as few
vertices as possible while satisfying the time constraint (you can’t mark all vertices!).

You can also consider a variation in which all calls don’t have to be answered within the given
bound, but a certain fraction does — for example, say 90% of the calls must be answered within 5
minutes. To answer this, we need to know the distribution of calls — some neighborhoods might
have a higher call rate than others, due to older houses, more densely packed neighborhoods, etc.
To model this, add weights to the vertices of the model in the previous paragraph. The number
on a vertex is the number of calls from that location in some unit of time (say in a year).

Consider the following example — in this picture, the letters inside the vertices are the names
of the locations (in general these will be strings), the numbers in boxes represent the rate of calls
to that location, and the edge weights represent the time to traverse that segment.
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On the given graph, if we want to be able to respond to all calls within 8 minutes, we can do
this with stations at vertex D and vertex F (at first it looks like you can’t get to vertex B in less
than 10 minutes, but the path is to go F→J→E→B (distance 8). However, with just two stations,
many of the distances are almost at the limit of 8 minutes. If instead we say that we would like to
respond to 90% of the calls within 5 minutes, then a solution is to place three stations at vertices
D, F, and N (there is no two-station solution). Location B is still out of luck (at distance 8) but
since B has a relatively low call rate of 11, and M and N have relatively high call rates (59 and 65,
respectively) this is overall a good solution.

The Problem to Solve

You are to write a program that reads in a description of a problem as described above, and finds
the best solution possible within a given time bound. Note that when the problem is small, as in
the pictured problem, you can do a brute force search and find the optimum solution. However,
your program should be able to handle much larger inputs: 500 to 5,000 vertices. In that case,
brute force doesn’t stand a chance of finishing during your lifetime (in fact, brute force wouldn’t
finish before the sun goes supernova, destroying the earth and all things on it — fire stations
aren’t going to help then). When determining which solutions are “best,” the following rules
apply: a solution meeting the constraints with fewer stations will always be better than a solution
with more stations; among multiple solutions with the same number of stations, a solution is
better if it has a smaller worst-case distance for response time (disregarding call frequency).

While there are many possible approaches to this problem, your program must be written so
that it finishes in under 30 minutes. So, for example, a reasonable approach is to search through
potential solutions in some sensible order, looking for the best one that you can find. You should
keep track of the time used by your program (similar to the simulations in Problem Set 10) and
output the best solution you have found when you approach the 30 minute limit. Note that it is
very important that your program finish and output a solution within 30 minutes: if it does not
produce a solution, then it can not be graded as correct. You probably want to test this with
smaller time limits (like 1 minute). If you have any difficulties with this part of the code see me
to work them out — you should be thinking about solving the problem, and shouldn’t have a
program fail because the timing code isn’t working.

Managing resources and keeping track of information in your program gets challenging as the
inputs get larger. To get an “A”, you must do this well enough to handle large inputs (up to
5,000 vertices) — if you can only handle smaller numbers of vertices, your program will still be
graded but the maximum grade you can receive will vary as follows:

Small Problems Only: If your program produces a valid solution only for small inputs (30 or
fewer vertices), then the maximum grade it can receive is an 80.

Medium Problems Only: If your program produces a valid solution only for medium-sized inputs
(500 or fewer vertices), then the maximum grade it can receive is a 90.



Challenge Competition

Programs will be tested with data sets of two sizes, medium (500 vertices) and large (5000
vertices), and allowed to run for 30 minutes. The solutions will be checked for correctness (they
must give a feasible solution), and then ranked according to quality of solution. 20 extra ninja
points will be distributed for each input size, distributed according to the quality of the solutions
produced.

Other Notes and Thoughts

This problem contains many of the components of some common real-world resource allocation
problems, and small changes can result in interesting variations. For example, what if we aren’t
picking designated locations, but instead are just partitioning the graph into regions that have a
bounded diameter (length of the longest path within the region)? This is what you would get if
you were defining police patrol areas rather than fire station locations — a patrol car is mobile, so
could be at any location in its region, and should be able to respond to a call from anywhere else
in the region within a reasonable time. For another variant, consider simplifying the original
problem so that all edge distances are one (which actually doesn’t make it that much easier from
a computational standpoint) — this reflects the problem of deciding where to put wired base
stations in an ad hoc network (bounding the number of hops a packet has to take before it
reaches a base station). Other variations take into account the dynamic nature of the underlying
data: as a municipality grows, where should we build new stations to cover the increased area,
with the understanding that you can’t just pick up all the existing fire stations and move them to
new optimal locations? Many of these problems and variants touch on research questions that we
don’t have good answers to currently — it’s a rich and deep area to explore!

Input and Output

The first line of the input will contain two integers: the distance limit (requests/calls must be
within this distance of a marked vertex to be “good”) and the percentage of requests that must
be good in a feasible solution. This is followed by a line containing the number of vertices,
followed by the vertices, each on a line containing the vertex name (a unique string with no
spaces) and a weight. This is followed by a line containing the number of edges, followed by a
description of each edge (the two endpoints and a weight). The output should consist of a line
giving the number of marked vertices in your solution and the worst-case distance to a vertex,
followed by the locations of the stations (follow the format shown in the samples).

The samples on the following page show a representation of the graph drawn on the first page.
The first sample output shows a request in which 100% of the requests must be within distance 8
of a marked vertex, and the second output (input not shown, but first line changed to “5 90”)
shows a request in which 90% of the calls must be within distance 5 of a marked vertex.



Sample Input 1
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B 11

C 33

D 9
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I 45

J 88

K 44

L 15

M 59
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A B 5

A D 6

B C 6

B E 4

C E 5

C F 4

D G 3

D H 4

E I 5

E J 2

F J 2

F K 4

G H 4

G L 3

H I 4

H L 3

H M 4

I N 2

K O 4

M N 2

N J 3

N O 5

Sample Output 1 (100% distances ≤ 8)

2 stations, worst distance: 8

D

F

Sample Output 2 (90% distances ≤ 5)

3 stations, worst distance: 8

A

F

H


