
CSC 495 – Problem Set 1 – Due Tuesday, January 17

Problem 1.R1: How Many Bits?

Required Problem

Points: 50 points

Background

When a number is stored in a primitive type, like an int or long variable, it always uses the same
number of bits (32 or 64, typically). But if we don’t need to store the leading 0 bits, we might
want to know how many bits are actually required to represent a number. For example, the
number 13 in binary is 1101, which requires only 4 bits to write down. Note: For a useful
example of when you need to know how many bits are required to store a number or a counter,
see problem 6 in Column 1 of Programming Pearls (or Problem 1.C2 in this problem set!).

The Problem to Solve

You are to read a sequence of numbers, and for each one output how many bits are required to
store that number. The numbers will all be in the range 1, . . . , 1018. You are required to compute

the answer using only basic boolean operations — you may not just call a library function!

Hints and Techniques

The allowable range for input numbers is important — pay attention to it, and make sure you can
handle all numbers in that range!

Elegance Considerations

Avoid hard-coding numbers or making ugly special-case code. Your goal is a very clean and
simple solution!



Input and Output

The input will consist of one line with the count of how many numbers follow (call this number
n), and then n lines each containing a single number in the range 1, . . . , 1018. For each of the n

numbers you should print the number of bits required to represent that number.

Sample Input

4

13

5

40000

5555555555555

Sample Output

4

3

16

43



Problem 1.R2: Counting Prime Numbers

Required Problem

Points: 50 points
Ninja Points: 5 extra ninja points to the fastest solution, and any within 5% of the fastest time.

Background

An important and interesting area of Mathematics studies the distribution and density of prime
numbers. In number theory, they use the function π(x) to represent “The number of prime
numbers less than or equal to x” (this is not related in any way to the geometric constant π – it
just happens to use the same Greek letter). As an example, π(15) = 6 since there are 6 prime
numbers less than or equal to 15 (specifically, 2, 3, 5, 7, 11, and 13). There is no known way to
compute π(x) efficiently for large x, so people consider techniques for approximating π(x). It
turns out that we could approximate π(x) with pretty high accuracy if an unproven Mathematical
hypothesis, known as the Riemann Hypothesis, is true. Settling this unsolved Mathematics
problem is in fact one of the Clay Institute “Millennium Prize Problems,” a list from 2000 of
what the Clay Institute considered to be the seven most important unsolved Mathematics
problems. Anyone who solves this problem will be awarded a million dollars by the Clay Institute.
Fortunately, you do not need to solve the Riemann Hypothesis for this problem (however,
1,000,000 ninja points and an automatic T-shirt if you do!).

The Problem to Solve

In order to consider approximations for π(x), it is important to know what the exact value is for
different values of x. You are to write a program that computes π(1, 000, 000, 000) – the number
of prime numbers less than or equal to a billion.

Hints and Techniques

Consider using a boolean array with indices from 1 to 1,000,000,000, called isPrime[]. We will
set the entry isPrime[x] to true if and only if x is a prime number. If you can fill in this array,
then you can simply count the number of true entries to see how many prime numbers there are.

To fill in the array, generalize the following procedure: first, assume everything ≥ 2 is prime
(so set all entries to true). Then starting at 4 (which is 2*2), step through the boolean array and
mark every other entry false, since these are the multiples of 2 (this is sometimes referred to as
going through the array with “stride” 2). Next, starting at 6 (which is 2*3), walk through with
stride 3, setting all multiples of 3 to false. Now continue looking from 3 and find the next true
entry — remember that we set 4 to false, so the next true entry is 5, and you can mark out all
multiples of 5. You can repeat this, looking for the next larger prime and crossing off its
multiples, until you have marked out all non-prime values in the array.

One question to ask, for efficiency: When can you stop? In other words, if an iteration is
crossing off all multiples of prime p, how large does p have to get before you stop? To rephrase



this question a little bit, consider an arbitrary non-prime x ≤ 1, 000, 000, 000: Can you fill in m in
the statement “x must have at least one prime factor ≤ m”? If you can do that, then you can
stop your loop once your prime “stride” becomes larger than m.

Elegance Considerations

There are several ways to implement this, and as long as your code can correctly compute
π(1, 000, 000, 000) in less than 10 minutes on linux.uncg.edu you will get full correctness points.
However, to get full elegance points, you will need to code things efficiently so that your program
runs in less than two minutes and uses less than 150 megabytes of memory. To do this in a
space-efficient manner, you should use techniques similar to those described in Column 1 of
Programming Pearls.

Input and Output

There is no input for this problem, and the required output is the number of prime numbers that
are ≤ 1, 000, 000, 000. This number is fairly easy to find on the Internet, but you get no
correctness credit just for printing that number. It must be computed correctly!



Problem 1.C1: No Carries Allowed

Challenge Problem

Ninja Points: This challenge problem is worth up to 20 base ninja points

Background

Adding numbers in binary is similar to the exclusive-OR, or XOR, operation, as you can see in
the following table (here ^ denotes the XOR operation):

x y x^y x+y

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 10

Note that the least significant bit of the sum is always equal to the XOR of the two input bits,
but since the output of the XOR is a single bit it has no place to put the “carry bit” that you get
in the sum.

When you use the XOR operator (^) in C, C++, or Java, it operates on all bits in parallel,
and is called a “bitwise operator” since it works on each bit position independently. For some
numbers, the XOR of the numbers is the same as the sum, and for others it isn’t. To take two
examples, 17 and 6 give the same result:

17+6 = 10001 + 110 = 10111

17^6 = 10001 ^ 110 = 10111

but 21 and 6 give different results:

21+6 = 10101 + 110 = 11011

21^6 = 10101 ^ 110 = 10011

The Problem to Solve

Given a integers x and y, you can consider the set E = {y |x + y = x XOR y}, which is the set of
all values that produce the same results when added and XORed with x. We would like to be able
to find the kth smallest element in the set E for any input x. x and k will be in the range
1, . . . , 1018, and you are further guaranteed that the answer will be in the range 0, . . . , 1018. Your
program will be given at most 5 seconds to process each pair of numbers.

Hints and Techniques

The range of the input numbers is important! It’s pretty easy to do this for small numbers, but
once numbers get large (say around 1012), if you don’t use the correct algorithm then your
program will not be be able to produce an answer in a reasonable amount of time. The correct



algorithm will run in time proportional to the number of bits in the input numbers, not the values
of the numbers. If you can’t figure out the algorithm right away, write out the numbers in the
sample in put and output in binary, and look for patterns for a clue.

If your program cannot process all numbers in the specified range in under 5 seconds for each
pair, then it is not correct. However, some partial credit (but very little – at most 5 ninja points!)
will be given if your program produces correct answers in under 5 seconds when the input values
are limited to the range 1, . . . , 106.

Input and Output

The input will consist of one line with the count of how many pairs follow (call this number n),
and then n lines each containing a pair of values x and k. For each pair, you should output the
k-th smallest number y for which x + y = x^y.

Sample Input

5

1 8

7 1

17 3

21 4

23261 133

Sample Output

14

0

4

10

131328



Problem 1.C2: Most Popular BFF

Challenge Problem

Ninja Points: This challenge problem is worth up to 20 base ninja points
Special Note: The submission program will only run tests on your program on smaller inputs (a
million items or less). The full test takes a while to run (just reading the file takes some time,
since it is over 3 Gigabytes!). Therefore you will not get any feedback on whether your program is
fast enough on the big data set — you need to be able to figure out on your own whether your
program is fast enough. Submissions will each be tested a single time on the large input, after the
due date when submissions are final.

Background

Sometimes you need to count a lot of items, requiring a lot of space, and so you need to use the
most space-efficient representation possible. Imagine if we held a contest to see which person in
the United States was “best friend” to the most other people. Forgetting all the privacy aspects
of Social Security Numbers (SSNs), we will ask each person for the SSN of their best friend since
SSNs are convenient and unique identifying numbers. How would we process this data to find
which SSN was given most often?

The Problem to Solve

You are given a list of SSNs, each 9 digits long and without dashes (so the range is 100000000 to
999999999), in no particular order. You are guaranteed that no number appears more than 30
times (some people might be popular, but come on...). You are to find which number appears
most often, and how often it occurs. Your program should be able to process around 300,000,000
SSN entries in under 15 minutes (but see the “special note” above).

Hints and Techniques

See problem 6 at the end of Column 1 in Programming Pearls.

Elegance Considerations

Note that to have an array with count value for each SSN, where each count is a 4-byte int,
would require 4 Gigabytes of memory. While we are seeing more and more systems with 4 GB of
RAM, this is too much to reliably count on. You should code this so that it takes no more than 1
GB of memory. There will be up to 310 million numbers provided (the approximate population of
the United States).



Input and Output Format

The input will consist of one line with the count of how many lines follow (call this number n),
and then n lines each containing a single SSN. The output of your program should be a single line
of output, with two numbers on it: The most commonly occurring number first, and the count of
how many times it occurs second. If there is more than one number with the same “most
occurring count”, output the smallest such number.

Note that the sample input given below is obviously much, much shorter than in the real data.
In fact, the algorithm you would want to use for just 10 numbers would be very different from
that used for 300,000,000 numbers, but the provided output is still correct!

Sample Input

10

735917530

753068294

544633009

735917530

544633009

735917530

544633009

735917530

341766943

753068294

Sample Output

735917530 4


