RecordsAdding Records to STLC
Require Import SfLib.
Require Import Maps.
Require Import Imp.
Require Import Smallstep.
Require Import Stlc.
Adding Records
t ::= Terms: | {i1=t1, ..., in=tn} record | t.i projection | ... v ::= Values: | {i1=v1, ..., in=vn} record value | ... T ::= Types: | {i1:T1, ..., in:Tn} record type | ...Reduction:
ti ⇒ ti' (ST_Rcd) | |
{i1=v1, ..., im=vm, in=tn, ...} ⇒ {i1=v1, ..., im=vm, in=tn', ...} |
t1 ⇒ t1' | (ST_Proj1) |
t1.i ⇒ t1'.i |
(ST_ProjRcd) | |
{..., i=vi, ...}.i ⇒ vi |
Γ ⊢ t1 : T1 ... Γ ⊢ tn : Tn | (T_Rcd) |
Γ ⊢ {i1=t1, ..., in=tn} : {i1:T1, ..., in:Tn} |
Γ ⊢ t : {..., i:Ti, ...} | (T_Proj) |
Γ ⊢ t.i : Ti |
Module STLCExtendedRecords.
Syntax and Operational Semantics
Module FirstTry.
Definition alist (X : Type) := list (id * X).
Inductive ty : Type :=
| TBase : id → ty
| TArrow : ty → ty → ty
| TRcd : (alist ty) → ty.
Unfortunately, we encounter here a limitation in Coq: this type
does not automatically give us the induction principle we expect:
the induction hypothesis in the TRcd case doesn't give us
any information about the ty elements of the list, making it
useless for the proofs we want to do.
(* Check ty_ind.
====>
ty_ind :
forall P : ty -> Prop,
(forall i : id, P (TBase i)) ->
(forall t : ty, P t -> forall t0 : ty, P t0
-> P (TArrow t t0)) ->
(forall a : alist ty, P (TRcd a)) -> (* ??? *)
forall t : ty, P t
*)
End FirstTry.
It is possible to get a better induction principle out of Coq, but
the details of how this is done are not very pretty, and the
principle we obtain is not as intuitive to use as the ones Coq
generates automatically for simple Inductive definitions.
Fortunately, there is a different way of formalizing records that
is, in some ways, even simpler and more natural: instead of using
the standard Coq list type, we can essentially incorporate its
constructors ("nil" and "cons") in the syntax of our types.
Inductive ty : Type :=
| TBase : id → ty
| TArrow : ty → ty → ty
| TRNil : ty
| TRCons : id → ty → ty → ty.
Similarly, at the level of terms, we have constructors trnil,
for the empty record, and trcons, which adds a single field to
the front of a list of fields.
Inductive tm : Type :=
| tvar : id → tm
| tapp : tm → tm → tm
| tabs : id → ty → tm → tm
(* records *)
| tproj : tm → id → tm
| trnil : tm
| trcons : id → tm → tm → tm.
Some examples...
Notation a := (Id 0).
Notation f := (Id 1).
Notation g := (Id 2).
Notation l := (Id 3).
Notation A := (TBase (Id 4)).
Notation B := (TBase (Id 5)).
Notation k := (Id 6).
Notation i1 := (Id 7).
Notation i2 := (Id 8).
{ i1:A }
(* Check (TRCons i1 A TRNil). *)
{ i1:A→B, i2:A }
(* Check (TRCons i1 (TArrow A B)
(TRCons i2 A TRNil)). *)
Well-Formedness
Definition weird_type := TRCons X A B.
where the "tail" of a record type is not actually a record type!
We'll structure our typing judgement so that no ill-formed types
like weird_type are ever assigned to terms. To support this, we
define predicates record_ty and record_tm, which identify
record types and terms, and well_formed_ty which rules out the
ill-formed types.
First, a type is a record type if it is built with just TRNil
and TRCons at the outermost level.
Inductive record_ty : ty → Prop :=
| RTnil :
record_ty TRNil
| RTcons : ∀i T1 T2,
record_ty (TRCons i T1 T2).
With this, we can define well-formed types.
Inductive well_formed_ty : ty → Prop :=
| wfTBase : ∀i,
well_formed_ty (TBase i)
| wfTArrow : ∀T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty (TArrow T1 T2)
| wfTRNil :
well_formed_ty TRNil
| wfTRCons : ∀i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty (TRCons i T1 T2).
Hint Constructors record_ty well_formed_ty.
Note that record_ty and record_tm are not recursive — they
just check the outermost constructor. The well_formed_ty
property, on the other hand, verifies that the whole type is well
formed in the sense that the tail of every record (the second
argument to TRCons) is a record.
Of course, we should also be concerned about ill-formed terms, not
just types; but typechecking can rules those out without the help
of an extra well_formed_tm definition because it already
examines the structure of terms. All we need is an analog of
record_ty saying that a term is a record term if it is built
with trnil and trcons.
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm trnil
| rtcons : ∀i t1 t2,
record_tm (trcons i t1 t2).
Hint Constructors record_tm.
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar y ⇒ if beq_id x y then s else t
| tabs y T t1 ⇒ tabs y T
(if beq_id x y then t1 else (subst x s t1))
| tapp t1 t2 ⇒ tapp (subst x s t1) (subst x s t2)
| tproj t1 i ⇒ tproj (subst x s t1) i
| trnil ⇒ trnil
| trcons i t1 tr1 ⇒ trcons i (subst x s t1) (subst x s tr1)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
Inductive value : tm → Prop :=
| v_abs : ∀x T11 t12,
value (tabs x T11 t12)
| v_rnil : value trnil
| v_rcons : ∀i v1 vr,
value v1 →
value vr →
value (trcons i v1 vr).
Hint Constructors value.
To define reduction, we'll need a utility function for extracting
one field from record term:
Fixpoint tlookup (i:id) (tr:tm) : option tm :=
match tr with
| trcons i' t tr' ⇒ if beq_id i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
The step function uses this term-level lookup function in the
projection rule.
Reserved Notation "t1 '⇒' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T11 t12 v2,
value v2 →
(tapp (tabs x T11 t12) v2) ⇒ ([x:=v2]t12)
| ST_App1 : ∀t1 t1' t2,
t1 ⇒ t1' →
(tapp t1 t2) ⇒ (tapp t1' t2)
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 ⇒ t2' →
(tapp v1 t2) ⇒ (tapp v1 t2')
| ST_Proj1 : ∀t1 t1' i,
t1 ⇒ t1' →
(tproj t1 i) ⇒ (tproj t1' i)
| ST_ProjRcd : ∀tr i vi,
value tr →
tlookup i tr = Some vi →
(tproj tr i) ⇒ vi
| ST_Rcd_Head : ∀i t1 t1' tr2,
t1 ⇒ t1' →
(trcons i t1 tr2) ⇒ (trcons i t1' tr2)
| ST_Rcd_Tail : ∀i v1 tr2 tr2',
value v1 →
tr2 ⇒ tr2' →
(trcons i v1 tr2) ⇒ (trcons i v1 tr2')
where "t1 '⇒' t2" := (step t1 t2).
Notation multistep := (multi step).
Notation "t1 '⇒*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step.
Typing
Fixpoint Tlookup (i:id) (Tr:ty) : option ty :=
match Tr with
| TRCons i' T Tr' ⇒
if beq_id i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Definition context := partial_map ty.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Γ x T,
Γ x = Some T →
well_formed_ty T →
Γ ⊢ (tvar x) ∈ T
| T_Abs : ∀Γ x T11 T12 t12,
well_formed_ty T11 →
(update Γ x T11) ⊢ t12 ∈ T12 →
Γ ⊢ (tabs x T11 t12) ∈ (TArrow T11 T12)
| T_App : ∀T1 T2 Γ t1 t2,
Γ ⊢ t1 ∈ (TArrow T1 T2) →
Γ ⊢ t2 ∈ T1 →
Γ ⊢ (tapp t1 t2) ∈ T2
(* records: *)
| T_Proj : ∀Γ i t Ti Tr,
Γ ⊢ t ∈ Tr →
Tlookup i Tr = Some Ti →
Γ ⊢ (tproj t i) ∈ Ti
| T_RNil : ∀Γ,
Γ ⊢ trnil ∈ TRNil
| T_RCons : ∀Γ i t T tr Tr,
Γ ⊢ t ∈ T →
Γ ⊢ tr ∈ Tr →
record_ty Tr →
record_tm tr →
Γ ⊢ (trcons i t tr) ∈ (TRCons i T Tr)
where "Gamma '⊢' t '∈' T" := (has_type Γ t T).
Hint Constructors has_type.
Examples
Exercise: 2 stars (examples)
Finish the proofs below. Feel free to use Coq's automation features in this proof. However, if you are not confident about how the type system works, you may want to carry out the proofs first using the basic features (apply instead of eapply, in particular) and then perhaps compress it using automation. Before starting to prove anything, make sure you understand what it is saying.Lemma typing_example_2 :
empty ⊢
(tapp (tabs a (TRCons i1 (TArrow A A)
(TRCons i2 (TArrow B B)
TRNil))
(tproj (tvar a) i2))
(trcons i1 (tabs a A (tvar a))
(trcons i2 (tabs a B (tvar a))
trnil))) ∈
(TArrow B B).
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample :
¬ ∃T,
(update empty a (TRCons i2 (TArrow A A)
TRNil)) ⊢
(trcons i1 (tabs a B (tvar a)) (tvar a)) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample_2 : ∀y,
¬ ∃T,
(update empty y A) ⊢
(tapp (tabs a (TRCons i1 A TRNil)
(tproj (tvar a) i1))
(trcons i1 (tvar y) (trcons i2 (tvar y) trnil))) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
Properties of Typing
Lemma wf_rcd_lookup : ∀i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Proof with eauto.
intros i T.
induction T; intros; try solve by inversion.
- (* TRCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (beq_id i i0)...
inversion H0. subst... Qed.
intros i T.
induction T; intros; try solve by inversion.
- (* TRCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (beq_id i i0)...
inversion H0. subst... Qed.
Lemma step_preserves_record_tm : ∀tr tr',
record_tm tr →
tr ⇒ tr' →
record_tm tr'.
Proof.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; auto.
Qed.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; auto.
Qed.
Lemma has_type__wf : ∀Γ t T,
Γ ⊢ t ∈ T → well_formed_ty T.
Proof with eauto.
intros Γ t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
Qed.
intros Γ t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
Qed.
Field Lookup
- If i = i0, then since Tlookup i (TRCons i0 T Tr) = Some
Ti we have T = Ti. It follows that t itself satisfies
the theorem.
- On the other hand, suppose i ≠ i0. Then
Tlookup i T = Tlookup i Trandtlookup i t = tlookup i tr,so the result follows from the induction hypothesis. ☐
Lemma lookup_field_in_value : ∀v T i Ti,
value v →
empty ⊢ v ∈ T →
Tlookup i T = Some Ti →
∃ti, tlookup i v = Some ti ∧ empty ⊢ ti ∈ Ti.
Proof with eauto.
intros v T i Ti Hval Htyp Hget.
remember (@empty ty) as Γ.
induction Htyp; subst; try solve by inversion...
- (* T_RCons *)
simpl in Hget. simpl. destruct (beq_id i i0).
+ (* i is first *)
simpl. inversion Hget. subst.
∃t...
+ (* get tail *)
destruct IHHtyp2 as [vi [Hgeti Htypi]]...
inversion Hval... Qed.
intros v T i Ti Hval Htyp Hget.
remember (@empty ty) as Γ.
induction Htyp; subst; try solve by inversion...
- (* T_RCons *)
simpl in Hget. simpl. destruct (beq_id i i0).
+ (* i is first *)
simpl. inversion Hget. subst.
∃t...
+ (* get tail *)
destruct IHHtyp2 as [vi [Hgeti Htypi]]...
inversion Hval... Qed.
Theorem progress : ∀t T,
empty ⊢ t ∈ T →
value t ∨ ∃t', t ⇒ t'.
Proof with eauto.
(* Theorem: Suppose empty |- t : T. Then either
1. t is a value, or
2. t ==> t' for some t'.
Proof: By induction on the given typing derivation. *)
intros t T Ht.
remember (@empty ty) as Γ.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty ⊢ x : T (since the context is empty). *)
inversion H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = tabs x T11 t12, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty ⊢ t1 : T1 → T2
empty ⊢ t2 : T1
By the induction hypothesis, each of t1 and t2 either is a value
or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
* (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = tabs x T11 t12, since abstractions are the only
values that can have an arrow type. But
(tabs x T11 t12) t2 ⇒ [x:=t2]t12 by ST_AppAbs. *)
inversion H; subst; try (solve by inversion).
∃([x:=t2]t12)...
* (* t2 steps *)
(* If t1 is a value and t2 ⇒ t2', then
t1 t2 ⇒ t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃(tapp t1 t2')...
+ (* t1 steps *)
(* Finally, If t1 ⇒ t1', then t1 t2 ⇒ t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃(tapp t1' t2)...
- (* T_Proj *)
(* If the last rule in the given derivation is T_Proj, then
t = tproj t i and
empty ⊢ t : (TRcd Tr)
By the IH, t either is a value or takes a step. *)
right. destruct IHHt...
+ (* rcd is value *)
(* If t is a value, then we may use lemma
lookup_field_in_value to show tlookup i t = Some ti
for some ti which gives us tproj i t ⇒ ti by
ST_ProjRcd. *)
destruct (lookup_field_in_value _ _ _ _ H0 Ht H)
as [ti [Hlkup _]].
∃ti...
+ (* rcd_steps *)
(* On the other hand, if t ⇒ t', then
tproj t i ⇒ tproj t' i by ST_Proj1. *)
destruct H0 as [t' Hstp]. ∃(tproj t' i)...
- (* T_RNil *)
(* If the last rule in the given derivation is T_RNil,
then t = trnil, which is a value. *)
left...
- (* T_RCons *)
(* If the last rule is T_RCons, then t = trcons i t tr and
empty ⊢ t : T
empty ⊢ tr : Tr
By the IH, each of t and tr either is a value or can
take a step. *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2; try reflexivity.
* (* tail is a value *)
(* If t and tr are both values, then trcons i t tr
is a value as well. *)
left...
* (* tail steps *)
(* If t is a value and tr ⇒ tr', then
trcons i t tr ⇒ trcons i t tr' by
ST_Rcd_Tail. *)
right. destruct H2 as [tr' Hstp].
∃(trcons i t tr')...
+ (* head steps *)
(* If t ⇒ t', then
trcons i t tr ⇒ trcons i t' tr
by ST_Rcd_Head. *)
right. destruct H1 as [t' Hstp].
∃(trcons i t' tr)... Qed.
(* Theorem: Suppose empty |- t : T. Then either
1. t is a value, or
2. t ==> t' for some t'.
Proof: By induction on the given typing derivation. *)
intros t T Ht.
remember (@empty ty) as Γ.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty ⊢ x : T (since the context is empty). *)
inversion H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = tabs x T11 t12, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty ⊢ t1 : T1 → T2
empty ⊢ t2 : T1
By the induction hypothesis, each of t1 and t2 either is a value
or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
* (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = tabs x T11 t12, since abstractions are the only
values that can have an arrow type. But
(tabs x T11 t12) t2 ⇒ [x:=t2]t12 by ST_AppAbs. *)
inversion H; subst; try (solve by inversion).
∃([x:=t2]t12)...
* (* t2 steps *)
(* If t1 is a value and t2 ⇒ t2', then
t1 t2 ⇒ t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃(tapp t1 t2')...
+ (* t1 steps *)
(* Finally, If t1 ⇒ t1', then t1 t2 ⇒ t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃(tapp t1' t2)...
- (* T_Proj *)
(* If the last rule in the given derivation is T_Proj, then
t = tproj t i and
empty ⊢ t : (TRcd Tr)
By the IH, t either is a value or takes a step. *)
right. destruct IHHt...
+ (* rcd is value *)
(* If t is a value, then we may use lemma
lookup_field_in_value to show tlookup i t = Some ti
for some ti which gives us tproj i t ⇒ ti by
ST_ProjRcd. *)
destruct (lookup_field_in_value _ _ _ _ H0 Ht H)
as [ti [Hlkup _]].
∃ti...
+ (* rcd_steps *)
(* On the other hand, if t ⇒ t', then
tproj t i ⇒ tproj t' i by ST_Proj1. *)
destruct H0 as [t' Hstp]. ∃(tproj t' i)...
- (* T_RNil *)
(* If the last rule in the given derivation is T_RNil,
then t = trnil, which is a value. *)
left...
- (* T_RCons *)
(* If the last rule is T_RCons, then t = trcons i t tr and
empty ⊢ t : T
empty ⊢ tr : Tr
By the IH, each of t and tr either is a value or can
take a step. *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2; try reflexivity.
* (* tail is a value *)
(* If t and tr are both values, then trcons i t tr
is a value as well. *)
left...
* (* tail steps *)
(* If t is a value and tr ⇒ tr', then
trcons i t tr ⇒ trcons i t tr' by
ST_Rcd_Tail. *)
right. destruct H2 as [tr' Hstp].
∃(trcons i t tr')...
+ (* head steps *)
(* If t ⇒ t', then
trcons i t tr ⇒ trcons i t' tr
by ST_Rcd_Head. *)
right. destruct H1 as [t' Hstp].
∃(trcons i t' tr)... Qed.
Inductive appears_free_in : id → tm → Prop :=
| afi_var : ∀x,
appears_free_in x (tvar x)
| afi_app1 : ∀x t1 t2,
appears_free_in x t1 → appears_free_in x (tapp t1 t2)
| afi_app2 : ∀x t1 t2,
appears_free_in x t2 → appears_free_in x (tapp t1 t2)
| afi_abs : ∀x y T11 t12,
y ≠ x →
appears_free_in x t12 →
appears_free_in x (tabs y T11 t12)
| afi_proj : ∀x t i,
appears_free_in x t →
appears_free_in x (tproj t i)
| afi_rhead : ∀x i ti tr,
appears_free_in x ti →
appears_free_in x (trcons i ti tr)
| afi_rtail : ∀x i ti tr,
appears_free_in x tr →
appears_free_in x (trcons i ti tr).
Hint Constructors appears_free_in.
Lemma context_invariance : ∀Γ Γ' t S,
Γ ⊢ t ∈ S →
(∀x, appears_free_in x t → Γ x = Γ' x) →
Γ' ⊢ t ∈ S.
Proof with eauto.
intros. generalize dependent Γ'.
induction H;
intros Γ' Heqv...
- (* T_Var *)
apply T_Var... rewrite ← Heqv...
- (* T_Abs *)
apply T_Abs... apply IHhas_type. intros y Hafi.
unfold update, t_update. destruct (beq_idP x y)...
- (* T_App *)
apply T_App with T1...
- (* T_RCons *)
apply T_RCons... Qed.
intros. generalize dependent Γ'.
induction H;
intros Γ' Heqv...
- (* T_Var *)
apply T_Var... rewrite ← Heqv...
- (* T_Abs *)
apply T_Abs... apply IHhas_type. intros y Hafi.
unfold update, t_update. destruct (beq_idP x y)...
- (* T_App *)
apply T_App with T1...
- (* T_RCons *)
apply T_RCons... Qed.
Lemma free_in_context : ∀x t T Γ,
appears_free_in x t →
Γ ⊢ t ∈ T →
∃T', Γ x = Some T'.
Proof with eauto.
intros x t T Γ Hafi Htyp.
induction Htyp; inversion Hafi; subst...
- (* T_Abs *)
destruct IHHtyp as [T' Hctx]... ∃T'.
unfold update, t_update in Hctx.
rewrite false_beq_id in Hctx...
Qed.
intros x t T Γ Hafi Htyp.
induction Htyp; inversion Hafi; subst...
- (* T_Abs *)
destruct IHHtyp as [T' Hctx]... ∃T'.
unfold update, t_update in Hctx.
rewrite false_beq_id in Hctx...
Qed.
Lemma substitution_preserves_typing : ∀Γ x U v t S,
(update Γ x U) ⊢ t ∈ S →
empty ⊢ v ∈ U →
Γ ⊢ ([x:=v]t) ∈ S.
Proof with eauto.
(* Theorem: If Gamma,x:U |- t : S and empty |- v : U, then
Gamma |- (x:=vt) S. *)
intros Γ x U v t S Htypt Htypv.
generalize dependent Γ. generalize dependent S.
(* Proof: By induction on the term t. Most cases follow
directly from the IH, with the exception of tvar,
tabs, trcons. The former aren't automatic because we
must reason about how the variables interact. In the
case of trcons, we must do a little extra work to show
that substituting into a term doesn't change whether
it is a record term. *)
induction t;
intros S Γ Htypt; simpl; inversion Htypt; subst...
- (* tvar *)
simpl. rename i into y.
(* If t = y, we know that
empty ⊢ v : U and
Γ,x:U ⊢ y : S
and, by inversion, update Γ x U y = Some S.
We want to show that Γ ⊢ [x:=v]y : S.
There are two cases to consider: either x=y or x≠y. *)
unfold update, t_update in H0.
destruct (beq_idP x y) as [Hxy|Hxy].
+ (* x=y *)
(* If x = y, then we know that U = S, and that
[x:=v]y = v. So what we really must show is that
if empty ⊢ v : U then Γ ⊢ v : U. We have
already proven a more general version of this theorem,
called context invariance! *)
subst.
inversion H0; subst. clear H0.
eapply context_invariance...
intros x Hcontra.
destruct (free_in_context _ _ S empty Hcontra)
as [T' HT']...
inversion HT'.
+ (* x<>y *)
(* If x ≠ y, then Γ y = Some S and the substitution
has no effect. We can show that Γ ⊢ y : S by
T_Var. *)
apply T_Var...
- (* tabs *)
rename i into y. rename t into T11.
(* If t = tabs y T11 t0, then we know that
Γ,x:U ⊢ tabs y T11 t0 : T11→T12
Γ,x:U,y:T11 ⊢ t0 : T12
empty ⊢ v : U
As our IH, we know that forall S Gamma,
Γ,x:U ⊢ t0 : S → Γ ⊢ [x:=v]t0 S.
We can calculate that
[x:=v]t = tabs y T11 (if beq_id x y then t0 else [x:=v]t0) ,
and we must show that Γ ⊢ [x:=v]t : T11→T12. We know
we will do so using T_Abs, so it remains to be shown that:
Γ,y:T11 ⊢ if beq_id x y then t0 else [x:=v]t0 : T12
We consider two cases: x = y and x ≠ y. *)
apply T_Abs...
destruct (beq_idP x y) as [Hxy|Hxy].
+ (* x=y *)
(* If x = y, then the substitution has no effect. Context
invariance shows that Γ,y:U,y:T11 and Γ,y:T11 are
equivalent. Since t0 : T12 under the former context,
this is also the case under the latter. *)
eapply context_invariance...
subst.
intros x Hafi. unfold update, t_update.
destruct (beq_id y x)...
+ (* x<>y *)
(* If x ≠ y, then the IH and context invariance allow
us to show that
Γ,x:U,y:T11 ⊢ t0 : T12 =>
Γ,y:T11,x:U ⊢ t0 : T12 =>
Γ,y:T11 ⊢ [x:=v]t0 : T12 *)
apply IHt. eapply context_invariance...
intros z Hafi. unfold update, t_update.
destruct (beq_idP y z)...
subst. rewrite false_beq_id...
- (* trcons *)
apply T_RCons... inversion H7; subst; simpl...
Qed.
Theorem preservation : ∀t t' T,
empty ⊢ t ∈ T →
t ⇒ t' →
empty ⊢ t' ∈ T.
Proof with eauto.
intros t t' T HT.
(* Theorem: If empty ⊢ t : T and t ⇒ t', then
empty ⊢ t' : T. *)
remember (@empty ty) as Γ. generalize dependent HeqGamma.
generalize dependent t'.
(* Proof: By induction on the given typing derivation.
Many cases are contradictory (T_Var, T_Abs) or follow
directly from the IH (T_RCons). We show just the
interesting ones. *)
induction HT;
intros t' HeqGamma HE; subst; inversion HE; subst...
- (* T_App *)
(* If the last rule used was T_App, then t = t1 t2,
and three rules could have been used to show t ⇒ t':
ST_App1, ST_App2, and ST_AppAbs. In the first two
cases, the result follows directly from the IH. *)
inversion HE; subst...
+ (* ST_AppAbs *)
(* For the third case, suppose
t1 = tabs x T11 t12
and
t2 = v2. We must show that empty ⊢ [x:=v2]t12 : T2.
We know by assumption that
empty ⊢ tabs x T11 t12 : T1→T2
and by inversion
x:T1 ⊢ t12 : T2
We have already proven that substitution_preserves_typing and
empty ⊢ v2 : T1
by assumption, so we are done. *)
apply substitution_preserves_typing with T1...
inversion HT1...
- (* T_Proj *)
(* If the last rule was T_Proj, then t = tproj t1 i.
Two rules could have caused t ⇒ t': T_Proj1 and
T_ProjRcd. The typing of t' follows from the IH
in the former case, so we only consider T_ProjRcd.
Here we have that t is a record value. Since rule
T_Proj was used, we know empty ⊢ t ∈ Tr and
Tlookup i Tr = Some Ti for some i and Tr.
We may therefore apply lemma lookup_field_in_value
to find the record element this projection steps to. *)
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Htyp]].
rewrite H4 in Hget. inversion Hget. subst...
- (* T_RCons *)
(* If the last rule was T_RCons, then t = trcons i t tr
for some i, t and tr such that record_tm tr. If
the step is by ST_Rcd_Head, the result is immediate by
the IH. If the step is by ST_Rcd_Tail, tr ⇒ tr2'
for some tr2' and we must also use lemma step_preserves_record_tm
to show record_tm tr2'. *)
apply T_RCons... eapply step_preserves_record_tm...
Qed.
☐
End STLCExtendedRecords.