
1

Introduction to the Trusted Platform Module
Design Goals and Capabilities

CSC 495/680 L tCSC 495/680 Lecture
September 13-?, 2010

References:
• A Practical Guide to Trusted Computing, Chapters 2-3
• Trusted Computing Group documentation

TPM Design Goals

• Book lists:
– Secure report the environment that booted

– Securely store data

– Securely identify the user and system

– Support standard security systems and protocolspp y y p

– Support multiple users on the same system while preserving
security among them

– Be produced inexpensively

• Book states will be FIPS 140-2 and CC EAL3 (or EAL4+)
– What does this mean?

What is “Assurance”?

• “Assurance” refers to “ways of convincing others that a
model, design, and implementation are correct.”
– From “Security in Computing” by Charles and Shari Pfleeger

– I’d add “ways of convincing others or yourself…”

• Can you quantify “confidence levels”?

• Need language for assurance levels and properties, so
we can see if a system is appropriate.

• Assurance tools: evaluation, testing, formal verification

Evaluation Standards

• A key characteristic of “trusted systems” is a security-
centric evaluation

• Valuable properties:
– Fit systems into a well-understood framework

Use consistent language and criteria– Use consistent language and criteria

• Influential evaluation standards:
– TCSEC (“Orange Book”): U.S. DoD
– ITSEC: European framework
– U.S. Federal Criteria: NIST standard (not DoD-specific)
– Common Criteria: Merges successful ideas from other

standards

Common Criteria

• Overview
– Separates features from assurance
– Functionality general-purpose, based on Protection Profiles and

vendor-defined Security Targets
– Assurance levels given as Evaluation Assurance Levels

• How it works:
– Evaluations by commercial testing labs accredited by NIST’s

National Voluntary Laboratory Accreditation Program (NVLAP)
• Called the “Common Criteria Testing Laboratories (CCTL)

– U.S. National Information Assurance Partnership Common
Criteria Evaluation and Validation Scheme (CCEVS) Validation
Body – managed by NIST and NSA

• Approves CCTLs
• Maintains NIAP Validated Products List

Common Criteria
Evaluation Assurance Levels (EALs)

• EAL-1: Functionally tested

• EAL-2: Structurally tested

• EAL-3: Methodically tested and checked
– Thorough testing, but not requiring controlled design process

• EAL-4: Methodically designed, tested, and reviewed
– Reflects good traditional software development practices from

design forward

• EAL-5: Semiformally designed and tested

• EAL-6: Semiformally verified design and tested

• EAL-7: Formally verified design and tested

2

Design Goal 1
Securely report the environment that booted

• Obvious fact 1: You can’t trust software to tell you whether
it is trustworthy
– Malicious software would just lie!
– Honest software in untrustworthy environment can’t tell if corrupted!

• A TPM should be tightly tied into system from very• A TPM should be tightly tied into system from very
beginning of boot sequence
– Tight integration makes a TPM different from a smartcard
– TPM uses Platform Configuration Registers (PCRs) to securely

hold measurements / logs of boot process
• Initial, very small, trusted part of BIOS kicks things off

– Core Root of Trust for Measurement (CRTM)

• Each stage in boot process measures/records next stage before
executing

Design Goal 1
Securely report the environment that booted

Source: Figure 2.1 in book (p.16)

IPL: “Initial Program Load” (boot loader)

IPS ??? T ?IPS: ??? Typo?

Note: Does not stop bad code from
loading!!! Just makes it possible to
determine when system is trusted
(and can lock secrets to trusted
environments).

Design Goal 1
Securely report the environment that booted

• TPM (v1.1) has at least 16 PCRs
– Can only be reset through system reboot

– PC-specific implementation defines use of first 8

– Remainder can be used in custom system-specific ways

• TPM (v1.2) adds 8 more – dynamic PCRs
– With support from rest of the system (CPU+chipset) can be reset

in carefully controlled situations
• Intel calls this support “TXT” (Trusted Execution Technology)

• AMD calls it “SVM” (Secure Virtual Machine)

Design Goal 1
Securely report the environment that booted

• How are measurements securely reported?

• Scenario: A user Alice wants to know what’s in PCR0
– Alice can be a local or remote user

If Alice could talk directly to the TPM

What is in PCR0?

729a4…c3

Good
value is

729a4…c3

Design Goal 1
Securely report the environment that booted

• But… Alice doesn’t talk directly to the TPM

Good
value is

729a4 c3

Lots of layers between Alice and TPM – and any could be corrupted

em r

Maybe even a network connection here

PCR0?

81bc9…a4

729a4…c3

A
pp

lic
at

io
n

Li
br

ar
y

O
pe

ra
tin

g
 S

ys
te

D
ev

ic
e

D
riv

er

729a4…c3

Design Goal 1
Securely report the environment that booted

PCR0?

Good
value is

729a4…c3

Signatures solve our problem – but not quite right here

Bad things
PCR0?

• Problem 1: Does the signature mean it came from a TPM?
– Solution: (PK,SK) is an identity key, certified by a PrivacyCA

Bad things
can happen
in here….

S = Sign(SK, 729a4…c3)

Verify(PK, S)

S

3

Design Goal 1
Securely report the environment that booted

• Problem 2: Could S be a replay of an earlier captured S?
– Solution: Send a random (non-repeating) nonce along with request

Good

Signatures solve our problem – this one is done right!

Nonce, PCR0?

value is
729a4…c3

Bad things
can happen
in here….

S = Sign(SK, Nonce || 729a4…c3)

Verify(PK, S)

S

Nonce, PCR0?

Design Goal 2
Securely store data

• Secure storage depends on cryptography and keys

• Keys are classified according to their use …
– Storage keys, Binding keys, Identity keys, Signature keys

• their properties• … their properties …
– Migratable? Restricted to certain environment (PCRs)?

• … and authorization
– Do you need to know a secret to use the key?

• Best way to understand TPM keys is from the specification

TPM Keys
The Data in a TPM_KEY12 Structure

TPM_STRUCTURE_TAG tag

UINT16 fill

TPM_KEY_USAGE keyUsage

TPM_KEY_FLAGS keyFlags

TPM AUTH DATA USAGE thD t U

Identifies this as a TPM_KEY12

How can this key be used?

Migratable?, etc.
TPM_AUTH_DATA_USAGE authDataUsage

TPM_KEY_PARAMS algorithmParms

UINT32 PCRInfoSize

BYTE* PCRInfo

TPM_STORE_PUBKEY pubKey

UINT32 encDataSize

BYTE* encData

When is auth required?

What kind of key (alg, size,…)

Encrypted secret key

Public key

TPM Keys
The Data in a TPM_KEY12 Structure

TAG tag

fill

keyUsage

keyFlags

SAGE thD t U

Possibilities:
• TPM_KEY_SIGNING
• TPM_KEY_STORAGE
• TPM_KEY_IDENTITY
• TPM_KEY_AUTHCHANGE
• TPM_KEY_BIND

G CSAGE authDataUsage

algorithmParms

PCRInfoSize

PCRInfo

EY pubKey

encDataSize

encData

• TPM_KEY_LEGACY
• TPM_KEY_MIGRATE

Important: Keys have a single use! So an identity
key can only be used to sign TPM-generated data
(unlike a signing key) – so if you get something
signed by an identity key, you know where the data
came from…

TPM Keys
The Data in a TPM_KEY12 Structure

TAG tag

fill

keyUsage

keyFlags

SAGE thD t U

TPM_ALGORITHM_ID algorithmID

TPM ENC SCHEME S hSAGE authDataUsage

algorithmParms

PCRInfoSize

PCRInfo

EY pubKey

encDataSize

encData

TPM_ENC_SCHEME encScheme

TPM_SIG_SCHEME sigScheme

UINT32 parmSize

BYTE[] parms

TPM Keys
The Data in a TPM_KEY12 Structure

TPM_ALGORITHM_ID algorithmID

TPM ENC SCHEME S h
Ex: TPM_ES_RSAESOAEP_SHA1_MGF1

TPM ES RSAESPKCSV15

Ex: TPM_ALG_RSA

TPM_ENC_SCHEME encScheme

TPM_SIG_SCHEME sigScheme

UINT32 parmSize

BYTE[] parms

TPM_ES_RSAESPKCSV15
TPM_ES_NONE

Ex: TPM_SS_RSASSAPKCS1v15_SHA1
TPM_SS_RSASSAPKCS1V15_DER
TPM_SS_NONE

Algorithm-specific

4

TPM Keys
The Data in a TPM_KEY12 Structure

Example parm structure for the RSA algorithm:

UINT32 keyLength

UINT32 numPrimes

UINT32 exponentSize Public exponent use 0 for “standardUINT32 exponentSize

BYTE[] exponent

Public exponent – use 0 for standard
exponent” (65,537)

TPM Keys
The Data in a TPM_KEY12 Structure

tag

fill

keyUsage

keyFlags

authDataUsage

TPM_PAYLOAD_TYPE payload (usually TPM_PT_ASYM)

TPM_SECRET usageAuth

TPM SECRET migrationAuth

Encrypted version of TPM_STORE_ASYMKEY:

Hash of other parts
of TPM_KEY12 struct
to bind the two together

authDataUsage

algorithmParms

PCRInfoSize

PCRInfo

pubKey

encDataSize

encData

TPM_SECRET migrationAuth

TPM_DIGEST pubDataDigest

TPM_STORE_PRIVKEY privKey

For an RSA key, a challenge: Maximum length that can
be encrypted by a 2048-bit modulus is 2048 bits – but “secret
key exponent” d is 2048 bits – add in rest and then it’s far
too big!!! No what?

Solution: privKey is one of the prime factors of n – rest is
recomputed

TPM Keys
Are you paying attention?

TAG tag

fill

keyUsage

keyFlags

SAGE thD t U

Very sensitive info – how key can be used, can it
migrate, does it need authorization…

Wh t t tt k f i l h i thi ?SAGE authDataUsage

algorithmParms

PCRInfoSize

PCRInfo

EY pubKey

encDataSize

encData

What stops an attacker from simply changing this?

TPM Keys
Hierarchy

Storage Root Key (SRK)
[private key never leaves TPM]

Key1
TPM KEY STORAGE More keys….TPM_KEY_STORAGE

Key2
TPM_KEY_SIGNING

Key3
TPM_KEY_STORAGE

(migratable)

Can only have migratable
keys under here…

o e eys

Basic idea: Storage keys
protect other keys, and
non-migratable keys can
only be under other
non-migratable keys…

TPM Keys
Typical Key Structures: Migratable Multi-User Hierarchy

As a result:

• Anyone can load keys under this PMBUser 1 User 2

Platform
Migration

Base

Storage Root Key (SRK) Migratable Storage Key
“Well-Known” use authorization
Migration auth known by administrator

• Anyone can load keys under this PMB

• Owner can migrate whole tree by
copying by migrating PMB and copying
external version of full subtree

• If only users know user key auth
secrets, then even owner can’t load
and use them

User 1
Migration

Base

User 2
Migration

Base

User 1
Signature

Key 1

User 1
Signature

Key 2

User 1
Bind
Key 1

User 2
Signature

Key 1

User 2
Bind
Key 2

User 2
Bind
Key 1

TPM Keys
Typical Key Structures: Migratable Multi-User Hierarchy

As a result:

User 1
Migration

Base

User 2
Migration

Base

Storage Root Key (SRK)
User base keys with migration auth
unknown to administrator/owner

• Owner cannot migrate user keys
directly

• Parent of user keys is non-migratable
SRK, so can’t be migrated that way

User 1
Signature

Key 1

User 1
Signature

Key 2

User 1
Bind
Key 1

User 2
Signature

Key 1

User 2
Bind
Key 2

User 2
Bind
Key 1

5

TPM Keys
Typical Key Structures: Nonmigratable Keys

User 1
Nonmigratable

Base

User 2
Nonmigratable

Base

Storage Root Key (SRK)

AIK 1 AIK 2

Note: Book shows AIK under user
non-migratable keys – that’s wrong!

Properties:
• All keys can be certified to be usable

only by the TPM
• Strong tie to this particular platform

Down-side: Can’t be backed up or
migrated in case of machine
failure/upgrade (although “maintenance”
mode a possibility)

User 1
Signature

Key 1

User 1
Signature

Key 2

User 1
Bind
Key 1

User 2
Signature

Key 1

User 2
Bind
Key 2

User 2
Bind
Key 1

TPM Keys
Is a non-migratable key really tied to a TPM?

• Already talked about modifying the migratable flag

• Since parent key must be non-migratable it is tied to this
TPM (induction hypothesis!), so can only be loaded on
this TPMthis TPM

• Final concern: Can we create a key externally (so we
know the secret key) and create the TPM_KEY12
marked “non-migratable” ourselves?
– No: This is one role for the tpmProof secret (stored in

migrationAuth)

TPM Keys
How is a key made ready for use?

• TPM_LoadKey does this (simplified version):
– Is specified parent key a TPM_KEY_STORAGE?

– Are we authorized to use the parent key?

– Decrypt encData using parent key

– Check pubDataDigest for authenticity of public datap g y p

– Is authentication required?
• If yes, match provided secret with decrypted usageAuth

– If key is non-migratable, is migrationAuth = tpmProof?

– Are PCRs valid?

• Note: TPM_LoadKey can rate-limit attempts to protect
against brute-force attacks

Design Goal 3
Securely identify user and system – Creating an identity (simplified)

TPM_MakeIdentity

Creates an AIK – must
be a non-migratable child
of SRK

AIKpub, EKpub, Cert(EKpub) 1. Check Cert(EKpub)
2. Pick random sess key S
3. Create/Sign Cert(AIK)g ()
4. B = E(S, Cert(AIK))
5. X = E(EKpub, <S, AIK>)B, X

TPM_ActivateIdentity(X)

Decrypts X with EKsec,
and if AIK is one of our
AIKs, release S

Decrypt B using S
→ Now Alice has Cert(AIK)

Key points:
• Only a legitimate TPM can decrypt X
• Will only allow decryption of Cert(AIK) if it

really is one of our AIKs

As a result:
• AIK certificates prove that the AIK is

bound to a TPM

Design Goal 5
Support and isolate multiple users

• One argument for not being able to get SRK private key
– If SRK private key were known, entire storage tree could be

decrypted

– More politically correct than “you can’t get it because we don’t trust
you, the owner of the machine”

• Keys further down in the storage hierarchy have individual
authorization secrets (set when the key is created)
– No “superuser access” that can access all keys (outside TPM)

– Can a rootkit capture user’s keystrokes entering passphrase?
• Theoretically the integrity protection can stop this (no rootkits!)

• Future plans include hardware “trusted path” (encrypted keyboard so
only encrypted data can be sniffed)

Additional TPM Capabilities
Secure (Pseudo) Random Numbers

• Secure random/pseudo-random numbers are important
for many security protocols (session keys, etc.)

• Examples of bad “random” numbers in protocols:
– Online blackjack game with non-cryptographic PRNG
– SSL session key derived from small seed (date and PID)SSL session key derived from small seed (date and PID)

• A standard, dependable, secure PRNG is very useful

• Then the book talks about using the TPM random
generation for things like Monte Carlo simulation:
– This is completely silly – no need for “security”, just uniformity,

and CPU can generate a good uniform sequence much faster
than the TPM

6

Some New Capabilities of Version 1.2

• Certifiable Migratable Keys (CMKs)
– Something in between 1.1 migratable and non-migratable
– Committed to certain migration authorities (MAs) when key created
– Certificate then says: This key is under the control of these MAs

• Monotonic Counters• Monotonic Counters
– State maintained across reboots and power cycles
– Counters can be incremented and don’t wrap – values don’t repeat

• Direct Anonymous Attestation
– A (much) more complex way of authenticating an AIK
– Does not reveal AIK even to PrivacyCA

• Delegation of Owner-Authorized Commands

