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Abstract

It is well known that spaces defined from a separated uniform struc-
ture with a linearly ordered base of uncountable cofinality (w,-
metrizable spaces) are ultraparacompact and have an ortho-base,
hence are non-Archimedean spaces in the sense of A. Monna. Our
results concern whether certain wider classes of spaces defined from
linear structures retain these properties. We construct for every reg-
ular cardinal w,,, examples of w,-additive, w,-stratifiable spaces (i.e.,
wy-Nagata spaces) that do not have an ortho-base. We give a number
of examples of linearly stratifiable spaces, one of which is related to an
example of Eric K. van Douwen concerning countable box products
of stratifiable spaces.
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1 Introduction

Zero-dimensional spaces arise throughout topology, in analysis, and also in several
contexts in algebra such as the Stone spaces of Boolean algebras, and the m-adic
topologies from local rings. The structure of zero-dimensional spaces from a “geo-
metric” point of view was considered by P. Nyikos and H. C. Reichel [19], who also
provided a review of zero-dimensional spaces.

This paper concerns the structure of and differences among several classes of
zero-dimensional topological spaces defined from linear structures such as separated
uniform structures with a linearly ordered base of cofinality w,, (or equivalently, w,-
metrics in the sense of F. Hausdorff [12, p.285], where w,, denotes a regular infinite
cardinal), and the more general linearly stratifiable spaces.

A well-known class of zero-dimensional spaces is the class of non-Archimedean
spaces in the sense of A. F. Monna [16]. These spaces have been characterized by
P. Nyikos as spaces that are both ultraparacompact (see 2.4) and have an ortho-
base (see 2.3) [18]. A. Kucia and W. Kulpa proved that for w, uncountable (i.e.,
p > 0) every wy-metric space is ultraparacompact [13], and P. Nyikos proved that
wy-metric spaces have an ortho-base [18] . Thus w,-metric spaces (u > 0) are
non-Archimedean.

The w,-metric spaces have two important linear properties. One is the manner
in which open sets in an w,-metric space (X, d) are increasing unions of closures of
open sets: for U open in X, and € > 0, U is the increasing union of the closures of
the sets {y : d(y, X \ U) < €} (linearly stratifiable spaces were defined to capture



this property). The other (partially) linear property, which is of interest in the
case pu > 0, is the property that every intersection of countably many open sets
is open (i.e., wi-additivity). Our main results show that w;-additive paracompact
spaces, hence w;-additive w,-stratifiable spaces, are ultraparacompact, but need
not have an ortho-base (see 3.1, and 4.1). Thus such spaces, although defined
using two important properties of w,-metric spaces, constitute a distinctly different
class of zero-dimensional spaces since they are not non-Archimedean spaces. An
unsolved question is whether the structure of linear stratification alone (without
wi-additivity) implies ultraparacompactness or zero-dimensionality.

Towards understanding the class of linearly stratifiable spaces, we give a number
of examples of such spaces. These examples are related to results in dimension
theory, the theory of ordered spaces, and set theory.

The countable cases (i.e., u = 0) correspond to wo-metric spaces (which are the
same as the usual metric spaces) and spaces stratifiable over wg (which are the same
as the usual stratifiable spaces of J. Ceder [2] and C. Borges [1]). Several of our
examples are of interest in the countable case. Our result in §4 provides the new
result that there exists a Nagata space (i.e., first countable, stratifiable) that does
not have an ortho-base. In §6, we give an example, related to one of Eric K. van
Douwen, that shows the countable box product of stratifiable spaces can fail to be
stratifiable, even if the product is wi-stratifiable, hence hereditarily paracompact
and monotonically normal. We give two examples concerning pseudocharacter and
character in w,-stratifiable spaces (see §7).

2 Definitions

We introduced in 1972 higher cardinal versions of two generalized metric spaces,
the Nagata and stratifiable spaces, which we called w,-Nagata and stratifiable over
wy. We recall these definitions.

Definition 2.1 ([22]) A space X with topology T is said to be stratifiable over w,,
provided there exists S : w, X T = T satisfying for allU € T, and 8 < wy,

LS, dx[S(B,(U)]cCU.

LS, ULS(8,U) : B < wy} =U.

LS; if WeT and U C W, then S(B,U) C S(B,W).

LSy if v < B <wy, then S(v,U) C S(B,U).

The function S is called an w,-stratification map (or stratification map) for X.

Definition 2.2 A point x in a space X is said to have a decreasing local neigh-
borhood base of cofinality w, provided for each x € X there exists a local base
{Na(2z) : o < wu} of neighborhoods of x such that for every a < f < w,,
Ng(z) C No(z). X is called w,-Nagata provided X is stratifiable over w, and
every point has a decreasing local base indezed by w,,.

The preceding definition of w,-Nagata space is equivalent to the original one [22,
Theorem 6.3].



If a space is stratifiable over at least one regular cardinal, we say it is linearly
stratifiable, and if w, is the smallest cardinal over which a space X is stratifiable,
we say that X is w,,-stratifiable.

We now define three properties that play a major role in the study of linearly
stratifiable spaces.

Definition 2.3 [18] A base B is called an ortho-base for a space X provided for
every B' C B either NB' is open, or NB' consists of a single point x and B' is a local
base for x.

Definition 2.4 [7, Proposition 1.2] A space X is called ultraparacompact provided
every open cover of X has a refinement consisting of pairwise disjoint clopen sets
(i.e., a refinement which is a partition of X into clopen sets).

Recall that P. Roy [20] gave an example of a metric space A such that ind
(A) = 0 and Ind (A) = 1. This shows that even a zero-dimensional metric space
(i.e., 4 = 0) need not be ultraparacompact.

Definition 2.5 [21] A space is called w,-additive provided every intersection of
fewer than w, open sets is open.

Obviously any space with a decreasing local base of cofinality w, (w, regular)
at every point is w,-additive; so w,-Nagata spaces are w,-additive. In contrast, a
space stratifiable over w, need not be w,-additive (nor even w;-additive). This may
be seen easily in the spaces constructed in §5.

We mention Nyikos’s theorem that if a space X is stratifiable over w,, and has
an ortho-base, then X is w,-metrizable [18].

3 Ultraparacompactness

In this section we show that every w;-additive linearly stratifiable space is ultra-
paracompact. Nyikos informed us that w;-additive paracompact spaces are ultra-
paracompact, and moreover this can be deduced from known results.

Theorem 3.1 FEvery wi-additive paracompact space is ultraparacompact. In par-
ticular, every wi-additive linearly stratifiable space is ultraparacompact (thus w,-
Nagata space ultraparacompact when p > 0).

Proof. Let X be paracompact and w;-additive. Sikorski [21] noted that every
w1 -additive normal space has the property that whenever F' C U with F' closed and
U open, there exists a clopen set ' C V C U (i.e., Ind X = 0, or X is ultranormal
[6]). R. Ellis proved that paracompact ultranormal spaces are ultraparacompact
[7, Proposition 1.2]. One could give an alternate proof using two results from the
dimension theory of normal spaces (1) Ind X = 0 if and only if dim X = 0 [17,
8-3], and (2) dim X = n if and only if every locally finite open cover has an open
refinement of order n+1 (an open cover of order 1 is a pairwise disjoint open cover)
[5]. This proves the first statement in Theorem 3.1. To complete the proof we call
on the following result.

Theorem 3.2 FEwvery linearly stratifiable space is paracompact.



We stated Theorem 3.2 in [22], and said it followed from our characterization
of paracompactness in [23], but J. Harris pointed out to us that it is not clear how
to directly apply the characterization. In her dissertation, Harris gave an alternate
proof of Theorem 3.2 using a theorem of hers of independent interest [11]. It seems
we should have said that Theorem 3.2 follows from the idea of the proof of our
characterization in [23]. For completeness, we now give that proof incorporating a
simplification suggested by the referee.

Proof of Theorem 3.2. By the Theorem of E. Michael [15], it suffices to
prove that every open cover U of X has a cushioned refinement V (i.e, V is a (not
necessarily open) refinement of U and there exists a function f : V — U such that
for every V' C V, we have clx(UV') C Uf(V')). Well-order U and let < be the
lexicographic order on w, x Y. Define

H(a,U) = S(a, U)\ [ J{S(8,V) : (8,V) <t (a, U)}.

Every z € X is in some S(a,U), hence in H(a,U) for the first such (o, U). We
show that the map H(a,U) — U is a cushion map. Let A C w, x U, and z €
dx(U{H(a,U) : (a,U) € A}). Fix a,U with z € S(a,U), and note that S(a,U)N
H(B,V) = 0 whenever (o,U) <1 (3,V). Thus

z €cdx((J{H(B,V): (8,V) € Aand (8,V) < (a,U)}.

If (B,V) < (a,U), then 8 < «, and thus H(3,V) C S(8,V) C S(a,UU4), where
UUa={U €U : (Fa)((a,U) € A)}. It follows that = € clx (S(a,JUa) C UUa.

Sikorski also noted that if w, is an uncountable regular cardinal then every
regular, w,-additive space is zero-dimensional (i.e., has a base of clopen sets) [21].
This leads to an open question.

Question 3.3 If X is stratifiable over an uncountable regular cardinal w,, is X
zero-dimensional, or ultraparacompact?

4 An w,-Nagata space not having an ortho-base

The example in this section was inspired by the bow-tie space of Louis McAuley
[14], which is a standard example of a Nagata space that is not metrizable.

We establish some notation. For an infinite cardinal w, let L(w,) denote the
space w,, + 1 with the topology in which all o < w, are isolated, and the point w,,
has its usual order neighborhoods. For every a < w,, let 2% denote the set of all
functions from a into 2 = {0,1}. We use the w,,-boz topology on 2“# which we recall
has as a base all sets of the form [f] = {g € 2“» : f C g}, where f is a function from
some ordinal a < w, into {0,1} (i.e., f € 2*) [4]. For z € 2“», let = | & denote the
restriction of the function = to @ C wy,.

For a point ¢ = (z,w,) € 2“» x L(w,), a local base in the product topology is
given by {N(q,a) = [z | a] x (o, w,] : & < w,}. For ¢ = (z,w,), let C(q) = {(=,0) :
B <wy}

For the underlying set take X = 2“* x L(w,), and for the topology on X take
the one in which every point of the form (z,v) for v < w, is isolated and a point
¢ = (z,wy), has as a local base all sets of the form U(g,a) = N(g,a) \ C(g) for
o < wy.



Example 4.1 The space X is an w,-Nagata space and does not have an ortho-base.

Proof. It is routine to check that the described neighborhoods generate a T»-
topology on 2+ x L(w,) that is finer that the product topology on 2¥# x L(w,,).
Moreover, for each point p = (z,w,) the family {U(p, @) : & < w,} forms a decreas-
ing local base of clopen sets indexed by w,. Hence X is w,-additive.

Claim: X is w,-Nagata. Since every point has a decreasing local base indexed
by wy, it suffices to show that X is stratifiable over w,. Given a, U define

S(a,U) =UN (2% x [0,a]) UU{U(m,wu,a) :U(z,wy,0) C U}

Since the other properties are clear, we show that S(«, U) is clopen, hence S satisfies
LS, . To prove this it suffices to consider (y,w,) € clx(S(a, U)). Then U(y,w,,a)N
S(a,U) # 0 so there exists U(z,w,,a) C U such that U(y,wy, @) U (z,w,,a) # 0.
This implies that y | @ = z | @, hence (y,w,) € U(z,w,,a) C S(a,U).
Claim: X does not have an ortho-base. Let B be any base for X. We will find a
non-isolated point p and B’ C B such that {p} = NB’, but B’ is not a local base for
.

We use transfinite induction on w,. Assume we have constructed points p, =
(zr,wy), sets B, € B, and ordinals o, < w,, for all 7 < + satisfying the following
properties for all o < 7y

(1) sup{a, : 7 < 0} < ay,

(2) U(po,0) C By C (WU (ppsap) : p <o},
(3) if 7 < o, then there exists a; < 8 < a, with z,(8) # z,(0).

We construct step <y as follows: Let p = sup{a, : 7 < v}. Then f =U{z,[a,; : T <
v} is a function (in 2?). To see this, note that if u < o < 7, then by (1) o, < @,
hence by (2) z, € [z,]a,); so z,la, =z, [a,. We define z, by cases: z,(n) = f(n)
ifn<pz,(n)=1if p<n<p+pandz,(g) =0if n > p+ p. The first case of
the definition shows that (z.,w,) € U(zs,w,, ;) for all 7 < 7, hence we may pick
B, and a, > p + p such that p, € U(p,,,) C B, C {U(pr, ;) : 7 < v}. Note
that by this construction z,(n) = 0 for 5 > a,, so (3) holds.

Now we define x = U{z;la; : 7 < w,}. Then z € 2. Put p = (z,w),
and B' = {By : @ < w,}. We check that p € NB': for any 0 < wy, by (2)
Ps € U(ps,a,) C By, and since z, ey = z|ay, we have p € U(p,,a,) C B,. Now
if ¢ € NB' then ¢ must be a non-isolated point since sup{a, : 0 < w,} = w,. But
then ¢ = (y,w,) and ¢ € U(p,,a,) imply yla, = zla, for all 0 < wy; soy = z,
and ¢ = p. To complete the proof we show that {B, : @ < w,} is not a local base
at p. In fact, B, ¢ U(p,0) for any 0 < w,. To see this, let 0 < w, be given. By
(3) there exists 8 > a, such that z(3) # z,(8), hence z # z,; so p # p,. Hence
(z,8) € U(ps,04a) C By, but (z,8) € C(p); so B, ¢ U(p,0).

Corollary 4.2 There ezist w,-Nagata spaces that are not non-Archimedean.

Corollary 4.3 There exists a Nagata space that does not have an ortho-base.

5 Spaces stratifiable over a set of regular cardinals

Since a space can be stratifiable over more than one cardinal, it is natural to ask
about the set of all regular cardinals w, over which a space is stratifiable. We



consider the following version of that question. The restriction to regular cardinals
stems from the property that a space is stratifiable over a singular cardinal A if and
only if it is stratifiable over cf(\).

Question 5.1 If S is a set of regular cardinals, does there exists a space X (S) such
that for every regular cardinal x, X (S) is stratifiable over k if and only if Kk € S?

We were not able to answer this question completely, but we give an affirmative
answer assuming there do not exist any inaccessible cardinals (see Corollary 5.9).
The spaces X (5) that we construct are rather simple in that they have exactly one
non-isolated point. Not all such spaces are linearly stratifiable.

Example 5.2 There exists a space with exactly one non-isolated point which is not
linearly stratifiable.

Proof. Start with the topological disjoint union L(w) @ L(w;) (defined in §4)
and let X be the quotient space obtained by collapsing the closed set {w,w;} to
a point. Thus X has a convergent sequence, hence cannot be stratifiable over any
uncountable regular cardinal [22, 2.10], and an open set which is not a countable
union of closed sets, hence X cannot be stratifiable over wy ([2, Theorem 2.2] or
[22, 4.1 A]). Thus X is not linearly stratifiable. Likewise, L(w) @ L(wi) is not
linearly stratifiable (this example was used by Nyikos and Reichel as an example of
a non-Archimedean space that is not w,-metrizable [19, Example 20]).

Notation 5.3 Let S be a set of regular cardinal numbers. Let [[S denote the
usual Cartesian product (i.e., [[ S is the set of all functions f with domain S and
satisfying f(s) < s for all s € S), and let o[ S denote {f € [[S:{s € S: f(s) #
0} is finite}.

Define the space Zo(S) = [[ SU{p} where p is an arbitrary point not in [[ S. We
define the topology on Zo(S) as follows: all points f € [[.S are isolated, and basic
neighborhoods of p are of the form Uy, = {f € Zo(S) : (Vs € S)(g(s) < f(s))}U{p},
forge]lS

Define the space Z1(S) = o[ SU {p} where p is an arbitrary point not in o[ [ S.
We define the topology on Z1(S) as follows: all points f € o[]S are isolated, and
basic neighborhoods of p are of the form U, = {f € Z1(S) : (Vs € S)(g(s) <

f(s)}U{p}, for g € o[] S.
The next result generalizes [22, Example 7.3].

Lemma 5.4 Both Zy(S) and Z1(S) are stratifiable over every s € S. For every
k <min S, Zy(S) is not stratifiable over k. For k > sup S, Z1(S) is not stratifiable
over k.

Proof. Fix s € S. For every a < s and i € 2 define the sets X’ = {f € Z;(S) :
f(s) = a}. For every a < s, the sets U{X} : 8 < a} are closed in Z;(S) (i € 2,
respectively). In both cases a stratification can be defined by S(a,U) =U if p € U,

and S(a,U) =UN(U{X}:8<a})ifpgU.
Now let kK < minS. We show that Z(S) is not stratifiable over k. By way
of contradiction, assume that Zy(S) is stratifiable over k. Then by LSy, LS, there



exists a decreasing family of open sets {Go : a < k} such that {p} = N{G4 :
o < k}. There exists g, such that U(ga) C Gq for all a < k. For s € S, define
h(s) = sup{ga(s) : @ < k} + 1. Then h(s) < s since s is regular and k¥ < s,
h € Zy(S) \ {p} and

hen{U(ga) : @ < s} CN{Gq :a < &} = {p},

a contradiction.

Now let xk > sup S. Tt is easy to see that Z;(S) is not stratifiable over k because
|Z1(S)| = sup S < k. By [22, Prop. 2.10] in any space stratifiable over a regular
cardinal k, every subset of cardinality less than & is closed discrete. But this would
contradict that Z; (S) has a non-isolated point. This completes the proof.

By S we mean the closure of S in the usual order topology on A = sup S + 1.

Lemma 5.5 Let S be a set of regular cardinals, and & a regular cardinal such that
k€S and min S < k < supS. Then there exists a space Z(S, k) that has exactly
one non-isolated point, and is stratifiable over every s € S, and not stratifiable over
K.

Proof. Put
Z(S,k) ={f € [[S:{s € Snk: f(s) #0} is finite } U {p},

where p is an arbitrary point not in [[S. To define the topology on Z(S,«),
take all f € Z(S,k) \ {p} to be isolated, and define basic neighborhoods of p for
g€ Z(S,8)\ {p} by U, = {f € Z(S,) \ {p} : (Vs € S)(g(s) < f(s))}. The space
Z (S, k) can be seen to be stratifiable over every s € S in the same way as for Zy(S)
and Z;(S). We show that Z(S, k) is not stratifiable over k. By way of contradiction,
assume that Z(S, k) is stratifiable over k. Then there exists a decreasing family of
open sets {G, : @ < K} such that {p} = N{G, : @ < k}. There exists g, such that
U(ga) C G, for all @ < k. Since k is regular, and [o][SN k| = supS Nk < &k
(by hypothesis), there exist x € {f € [[SNk:{s € SNk : f(s) # 0} is finite }
and A € [k]" such that for all @ € A, g4 | (SNk) = z. For s € S\ k, define
h(s) = sup{ga(s) : @ < k}. Then h(s) < s since s is regular. Define

[ z(s) ifseSNnk
y(s)—{ h(s) ifseS\k.

Then y € Z(S, k) \ {p} and
YyEMN{U(ga) i€ A} CN{Gn:a € A} =N{Gy: a < k} = {p}

where the first equality follows because the G, are decreasing. This contradiction
completes the proof

Now we prove the main result of this section.

Theorem 5.6 For every set S of reqular cardinals, there exists a space X (S), hav-
ing exactly one non-isolated point, such that X (S) is stratifiable over every k € S.
Moreover, X(S) is not stratifiable over any regular cardinal k ¢ S.



Proof. Let Y (S) denote the following disjoint union
Y(S) = Zo(S) ® Z1(S) ® (®{Z(S,k) :minS < k <supS and x & S)}.

It is easy to see that for every s € S, Y(S) is stratifiable over s. Now let x be a
regular cardinal, and k ¢ S. For kK < minS or & > sup S, Y(S) is not stratifiable
over k£ by Lemma 5.4 and heredity. Now let min S < k < supS and x ¢ S. Thus
by Lemma 5.5, Z(S, ), and hence Y(S), is not stratifiable over . Let X (S) be the
quotient space obtained by collapsing the set of non-isolated points in Y to a single
point. Since the quotient map is a closed map, X(S) is stratifiable over s for all
s € S [22, 4.1 D], and by heredity X (S) is not stratifiable over any cardinal k & S.
This completes the proof.

Corollary 5.7 If S is a set of regular cardinals such that S = S and X(S) is the
space defined in Theorem 5.6 then for every regular cardinal k, X (S) is stratifiable
over k if and only if kK € S.

In case S is a finite set of regular cardinals, S = S; so the preceding corollary
can be applied to S. A simpler example, however, can be given for finite S: The
techniques already discussed also show that for S finite, Zo(S) is stratifiable over &
iff ke S.

Corollary 5.8 For every w, there ezxists an w,-stratifiable space X that is not k-
Nagata for any cardinal k. Moreover there exists such a space that is stratifiable.

Proof. Let S = {wg,w,}. By Corollary 5.7, X(S) is stratifiable over both wq
and w, (but not stratifiable over any other cardinals). Since X (S) is stratifiable

over two regular cardinals, it is not k-Nagata for any cardinal k. We could also use
Z(S) since S is finite.

Corollary 5.9 Assume there exist no inaccessible cardinals. Then for every set
S of reqular cardinals, there exists a space X (S) having ezactly one non-isolated
point such that for every regular cardinal k, X (S) is stratifiable over k if and only
ifk€eS.

We mention a special case of Question 5.1

Question 5.10 Let k be an inaccessible cardinal, and S a set of reqular cardinals
cofinal in k. Does there ezist a space stratifiable over S but not over k¢ Does there
exist one having ezxactly one non-isolated point?

Sikorski proved that if w, is an uncountable regular cardinal then every regular,
wy-additive space of weight w,, is w,-metrizable [21]. Thus every w,-Nagata space
with weight w, is w,-metrizable (for the countable case, the result follows from
the Urysohn metrization theorem). This result does not extend to w,-stratifiable
spaces.

Example 5.11 An w,-stratifiable space (u > 0) of weight w,, that is not k-Nagata
for any k.



Proof. Let S = {wo,w,}. The required example is X = Zy(S) x L(w,) where
Zy(S), and L(w,) are defined in §4. Since both spaces are stratifiable over w,
and have weight w,,, the product X has these same properties. Further, X is not
stratifiable over any cardinal different from w,, since L(w,) is not; so w,, is the only
cardinal over which X is stratifiable; hence X is w,-stratifiable. The space X is
not k-Nagata for any & since it contains a subspace homeomorphic to Zy({wo,w,}),
which is not k-Nagata for any «.

The preceding example show a difference between the countable and uncountable
cases since every stratifiable space of weight wg is Nagata (in fact metrizable).

The spaces constructed in this section can also be shown to be M; over the
respective cardinals (see [10]).

6 Box products of w,-stratifiable spaces

Let X% denote the product of w, many copies of X with the box topology. We
prove the following

Theorem 6.1 If S = {w,,w,+1} then OX(S)“r is stratifiable over w,41 and over
no other reqular cardinal.

Corollary 6.2 If S = {wg,w; } then OX“° is stratifiable over w; and over no other
regular cardinal. In particular, 0X (S)“° is not stratifiable.

This corollary may be compared with the result of E. K. van Douwen that a box
product of countably many metric spaces need not be stratifiable. In fact, van
Douwen showed that (JP¥, the product of countably many copies of the irrational
numbers P with the box topology, is not stratifiable [3] by showing that it is not
normal. Our example differs from van Douwen’s in two ways. He starts with the
metric space P, and gets a non-normal box product [JP¥. We start with a non-
metrizable space X (S), but we get a product X (S)“ that is stratifiable over wy,
hence hereditarily paracompact and monotonically normal (Theorem 3.2 and [22]).

Proof of Theorem 6.1. By [22, Theorem 5.2], X (S)¥r is stratifiable over
wy+1- Since X (S) is w,-additive, so is OX (S)“#. To complete the proof it suffices
to show that X (S)“# is not stratifiable over w,. To do this we will show that
there is a closed set A that is not equal to the intersection of w, many open sets
(thus LS, fails). Take

A={feDX(9)“ : {a <wu: f(a) # P} <wu},

where p is the non-isolated point of X(S). Suppose that {Uy : a < w,} is a
family of open sets each containing A. We use the notation that given zg € X (S5)
for 8 < v < wy, the function f, € A is defined by f,(a) = z, for a < v, and
fy(a) = p otherwise. We construct by induction on w, open boxes II,B? and
points zg € N{B}j : 7 < B} \ {p} such that

fa €aBE C Usn () MaBY).
T8



To begin let fo denote the constant function in L0X“° with constant value p.
Since fo € A, we may select an open box II,BY such that fo € [I,B% C Up. Pick
zo € B\ {p}. At step v, we have f, € ANz, (oBY). By w,-additivity, we
may select an open box II,B? such that

fy €,BY c Uy N () (aBY),
By

and choose z, € N{B7 : 7 < v} \ {p}. It follows that z = (z4) € N{Us : @ < wy},
and z ¢ A.

7 Character versus pseudocharacter

It is easy to see that if X is stratifiable over w), then ¢(X) <w, < x(X) [22, 2.12],
where 9 (X) denotes the pseudocharacter of X and x(X) denotes the character of X
(see [8]). It is natural to ask: can we get both inequalities to be strict? The spaces
in §2 do not completely answer this question since their pseudocharacter equals the
smallest cardinal over which they are stratifiable.

Example 7.1 The space X = OX ({w,w,})* X X({w,wy,wut1}) (> 0) is strat-
ifiable over w, (and no other regular cardinal) and satisfies w = P(X) < w, <
wut1 < x(X).

Proof. All the coordinate spaces are stratifiable over wy,, hence X is stratifiable
over wy, [22, Theorem 5.2]. The space X ({w,w,}) is stratifiable, hence every point
(in particular the non-isolated point) is a G; so in the countable box product every
point is a G5. Also X ({w,w,,w,+1}) is stratifiable. Thus X is the product of two
spaces in which every point is a G; s0 (X)) = wg. The character of the non-isolated
point in X ({w, wy,wy+1}) is wyy1, hence x(X) > wyy1.

Question 7.2 For any regular w,, does there exist a linearly stratifiable space X
such that w, = Y(X) < s < x(X) for all reqular cardinals s over which X is
stratifiable?

There are simple examples of countable spaces that have no point of first count-
ability. Using the same idea, and the previous results, we give the following example.

Example 7.3 For every regular cardinal w,, there exists an w,-stratifiable space
X such that | X| = w, and every point of X has character greater than w,,.

Proof. Let Z be the quotient space obtained from the disjoint union of w,, copies
of L(w,) by collapsing the non-isolated points to a single point, denoted by p. Then
Z is stratifiable over w, and has one point, p, with character greater than w,. Put
Y =0Z2%, and define X = {f € Y : |{n € w: f(n) # p}| < w}. By the product
theorem [22, Theorem 5.2] the space Y is stratifiable over w,,, hence by heredity X
is stratifiable over w,,. The space X contains homeomorphic copies of Z (e.g., map
z to (2,p,...,p,...)) , hence of L(w,); thus X is not stratifiable over any cardinal
other than w,. The other two properties of X follow easily.

We wish to thank Peter Nyikos and the referee for their helpful suggestions.
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