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Preface

The purpose of this monograph is to introduce at the undergraduate level
Euclidean n-space, E™, and briefly its infinite-dimensional version #2, using
topics in physics as motivation and background. The physics we use is
especially concerned with 4-dimensional models of spacetime, and we have
discussed several 3-dimensional manifolds in E* including 3-spheres, 3-tori,
and 3-hyperboloids. We hope the reader will gain enhanced intuition into
the Euclidean and analytical geometry of such figures. The material in
this monograph can be used to supplement courses which cover calculus in
dimensions 2 and 3.

The topic of expanding universes (or more precisely, the inflating balloon
model of an expanding universe) provides background for our introduction of
E"™, and the topics of wormholes and parallel universes provide background
for our introduction of 2. We use only basic analytic geometry of Euclidean
spaces and elementary differential calculus (albeit in higher dimensions).
We include a number of mathematical exercises of varying difficulty. While
it is not our purpose to go deeply into matters of physics (for an elemen-
tary introduction to the physics of expanding universes see [21]), we include
throughout brief discussions of the relevant physics and give numerous ref-
erences (both elementary and advanced) for further reading.

Greensboro, N.C.
October 15, 1994



1 A brief history of the expanding universe model

Isaac Newton believed that our universe was infinite and static (neither
expanding nor contracting). This notion held sway for about 200 years,
and gained almost the status of a religious belief. When Einstein analyzed
gravity and developed his general theory of relativity, he found that his
mathematical model predicted an expanding universe. Since this contra-
dicted Newton’s theory of a static universe, Einstein promptly added to his
model a constant factor, the cosmological constant, and explained in his
1917 paper that the only purpose of this constant was to keep the universe
static [5, p. 214].

In the late 1920’s, an American astronomer, Edwin Hubble, found that
light from stars in far-distant galaxies has a spectral red-shift (see [14] and
[15, p. 753-765]). The red shift is interpreted as a Doppler shift caused by
motion of the source. Because it is a shift to lower frequencies, the source,
i.e., the stars and their parent galaxies, must be moving away from the
earth. The amount of the shift indicates how fast the sources are moving
away. When Hubble correlated the velocities of recession with the distances
of the sources, he found that the velocities varied directly as their distances:

v = Hr, (1)

where r is the distance of the source from the earth, v is the recession
velocity of the source (i.e., v = dr/dt), and H is a number now called
Hubble’s constant (despite the name, the Hubble “constant” is not thought
to be constant over time [16, p. 709]). It follows from Hubble’s formula that
the further away a source is from the earth, the faster it is receding from
the earth.

Hubble’s discovery of the expanding universe shattered the static models.
Einstein removed the cosmological constant from his equations of general rel-
ativity, calling it one of his biggest blunders [10, p. 44]. Cosmologists devel-
oped theories to account for the expansion. The theory generally accepted
today considers the universe to be finite and expanding. The expansion
started at the time of the Big Bang, a cosmic explosion 10 - 20 billion years
ago.

Models of expanding universes used by cosmologists are concerned with
other physical properties as well as expansion, and are rather complex. In



addition, they are not well constrained by observational data [12]; exotic
models such as hypertoroidal universes cannot be excluded. Standard mod-
els of the physical universe use at least 4 dimensions, and in fact models
using more than 4 dimensions have been considered in physics (e.g., [9] and
[11]). For further discussion about the discovery of the expanding universe
see [25, p. 165-194], and [24]. For a non-technical discussion of whether re-
cession velocities are quantized, see [7] (quantized recession velocities imply
discontinuous spaces).

2 The inflating balloon model

The inflating balloon model of the expanding universe is well-known [16, p.
719]. In this model, our ordinary 3-dimensional universe (at a specific time)
corresponds to the (2-dimensional) surface of a spherical balloon. We mark
(perhaps with a felt-tip pen) various dots on the surface of the balloon, and
we label two of the dots p and q. We then inflate the balloon, and observe
that the distance between the dots (measured on the surface of the balloon)
increases with the increase in radius of the balloon. Strictly speaking, the
dots labeled p and ¢ at time ¢ are not the same dots that carry the labels
p and ¢ at a later time u > ¢ because they are located not only at different
times, but also at different points in 3-space. (The path swept out by p
as it moves during the time that the balloon is being inflated is called the
worldline of p.) We assume that the center of the balloon is not moved in
3-space during the inflation, and we observe that the angle formed by two
points and the center of the sphere does not appear to change as the balloon
is inflated (this is perhaps obvious if we disregard the time axis, and view
the balloons as being stacked up concentrically in 3-space). In §5 using cal-
culus we give a proof that in any such “cross-sectionally spherical” model
the angle is preserved as in the balloon model, and moreover (under a rea-
sonable assumption about differentiability) exhibits the “Hubble property”
of expanding universes (these terms are defined in §3, and §5).

3 Definitions

Let n be a positive integer. Fuclidean n-space, denoted E", is defined as the
set of all ordered n-tuples (x1, ..., z,) of real numbers. We follow a standard



convention of using a superscript to denote the dimension of a manifold. We
use the term “manifold” informally to refer to subsets of E™ in which we are
interested in this monograph. (Examples of 2-manifolds in E3 are 2-spheres,
hyperboloids, toruses, and planes.)

A point y in E™ is on the zi-axis provided y; = 0 for 2 < i < n. We
may assume that the x;-axis is a time axis and denote real numbers on the
z1-axis by such variables as t or u as well as 1. If we wished, we could
also assume that units of length and units of time are equivalent. Identical
length and time units result when the speed of light ¢ = 1; for example, if
distance is measured in light years and time in years, ¢ = 1 ly/yr.

The (n — 1)-sphere centered at (y1,...,y,) with radius > 0, denoted
S 1((y1,...,9yn),r), is the set of all points z in E™, which satisfy the equa-
tion

(1 —y1)2 + (o —92)% 4+ ... + (2 —yn)? =12

In this monograph we are only interested in n-spheres with centers on the
xz1-axis. The (n — 1)-sphere with center at the point (¢,0,...,0) on the
x1-axis is the set of all points = in E™ which satisfy the equation

(x1 —t)? + 23 +... 4+ 22 =712

A hyperplane in E"2, perpendicular to the x1-azis at the point (t,0,...,0),
is the set of all points z in E™*2 such that z; = t, and is denoted by Pt"+1. A
subset (or more technically, an (n+ 1)-dimensional manifold) M™*! of E*12
is said to be cross-sectionally spherical if each hyperplane perpendicular to
the z1-axis intersects M™*! in an n-sphere with center at (¢,0,...,0) or in
a single point or in the empty set. For each ¢t € E' such that this intersec-
tion is nonempty, we define y(¢) > 0 to be the radius of this cross-sectional
n-sphere. Thus

S™((t,0,...,0),7(t)) = P*n Mt

The function «(¢) is called the radius function of the manifold. To simplify
the notation for the cross-sectional n-spheres, we let

S = S"((¢,0,...,0),v(t))

(since the radius of each cross-sectional n-sphere is determined by the man-
ifold, we do not need to explicitly include the radius in our notation). Thus,



a cross-sectionally spherical manifold M™t! can be viewed as the union of
a family of n-spheres:

M™M= U{SP:t € E' and 7(t) is defined}.

In the context of expanding universes, M"t1 is called a spacetime man-
ifold, E"*2 is called the ambient space, and the spherical cross-sections S
are called the universe at time t. Figure 1 gives an illustration of these
concepts in which the ambient space is E2, the spacetime manifold M? is a
hyperboloid whose equation is 72 + € = z3 + z5 (see §4), and the universe
at time ¢, S}, is a circle (depicted at several different times).

Our space-time manifolds are embedded in the ambient space, and from
the point of view of mathematics this is natural and convenient. We note,
however, that the physical universe is not thought to be embedded in an
ambient space, and therefore questions about what lies beyond the “edge”
of the universe cannot even be asked about the physical universe because
there is no “space” beyond its “edge.” A model of spacetime without an
ambient space is given in Exercise 5.11.



4 Models for (n+1)-dimensional hyperboloids em-
bedded in E"2

To gain intuition about n-dimensional Euclidean spaces, it is common to
consider the special cases of one, two and three dimensions, and there are
many expositions that follow this pattern. Two that are particularly well-
know are the book Flatland [1], and the more recent book Sphereland [4],
which extends these analogies to include the topic of expanding universes.
We follow this pattern, and discuss our model in low dimension before giving
the general n-dimensional case. We begin with the case n = 1.

Let ¢ denote a positive real number. Let H? denote a (connected) 2-
dimensional hyperboloid (i.e., hyperboloid of one sheet; see Figure 1) in E3,
defined by the equation

x%—ke?:z%—kw%.

This € is the minimum radius of the universe in this model, and occurs at
time ¢ = 0. We want this radius to be so small that at time ¢ = 0 the
universe is in the state called the big bang. To achieve that we use a value
for € which is less than the radius of a universe at which the laws of physics
break down. (According to current theory, we would take € less than the
Planck length, which is approximately 1.616 x 1033 centimeters [16, p. 12].)
This small value of € allows the laws of physics to start anew after the big
bang, and it appears to be meaningless to ask what they were previous to
the big bang.

Some further notation: an affine space P* in E™, k < n is a copy of
E* in E™ that may or may not contain the origin. If & = n — 1, the affine
space is called a hyperplane. The symbol P* usually has a subscript. In this
monograph, hyperplanes are usually chosen perpendicular to an axis of E"
or perpendicular to a circle with center at the origin.

Let ¢ be a fixed number on the zj-axis. Let P? be the hyperplane
containing the point (¢,0,0) and perpendicular to the z;-axis.

Exercise 4.1 Show that for each t on the z1-axis, H>N P? = S} is a circle
with center at (¢,0,0) in E3 and radius of length V12 + €2.

In this model, “space” at time ¢ is the 1-sphere (circle) S}, and the
universe is contracting for ¢ < 0, and expanding for ¢ > 0. The minimum
radius of S} is €, and the minimum occurs at ¢t = 0. (Negative values of ¢ can



be considered as designating time before this minimum radius occurred.) It
is easy to visualize the circle S} expanding or contracting in H? embedded
in E? (see Figure 1). Unfortunately, inhabitants of this model universe must
live on the 1-dimensional circumference of a circular disk in a manner similar
to the creatures in Lineland [1]. To attempt more realism, we now consider
the case n = 2; i.e., we move up one dimension.

Let H3 denote the 3-dimensional hyperboloid in E* defined by the equa-
tion

:L‘%-I—GQ :$§+x§+wi.

Let ¢ be fixed, and let P} be the hyperplane containing (,0,0,0) and per-
pendicular to the z;-axis of E*. In this case, “space” at any time ¢ is the
ordinary sphere (2-sphere) H3 N P? = S? with center at (¢,0,0,0) and ra-
dius of length v/#2 + €2. In order to to visualize S? contracting in H? for
t < 0, and expanding in H? for ¢ > 0, it is helpful to recall that the center
(t,0,0,0) of S? is on the x1-axis which is perpendicular to the (space) axes
that actually define S?, and that (¢,0,0,0) is not on H3. Inhabitants of this
model, like those in Sphereland [4], are confined to the surface of a 3-ball
(ordinary sphere) [4]. We now move up one more dimension to the case
n=3.

Let H* denote a 4-dimensional hyperboloid in E® defined by the equation

w%+62:x%+$§+xi+w§

Let t be fixed, and let P} be the hyperplane containing (¢,0,0,0,0) and
perpendicular to the z;-axis of E5. In this case, “space” at any time ¢ is
the sphere (3-sphere) H* N P} = S} with center at (t,0,0,0,0) with radius
of length v/#2 + €2 (note that the equation of the 3-dimensional sphere Sf’
involves 4 variables, and therefore is not easy to visualize directly). It is
compatible with known physical observations that the universe in which we
live could be a 3-sphere expanding in a 4-dimensional hyperboloid H* that
is embedded in 5-dimensional Euclidean space E5. This 3-sphere is our
traditional 3-dimensional space. Analogies in lower dimensions give us some
intuition about this model. Indeed, there is no mathematical reason to stop
this discussion with E5, and in fact physical models of the universe which
involve many more than 4 dimensions have been considered (such as string
theories; see [9], [11]). We now discuss the general case of dimension 7.



Let H™*! denote an (n + 1)-dimensional hyperboloid in E™2 defined by
the equation
gl + € = a3+ af b ap g Fan . (2)

Let t be fixed, and let P/"*! be the hyperplane containing (t,0,...,0) and
perpendicular to the z;-axis of E"12.

Exercise 4.2 Show that H™' N P! = SP is an n-sphere with center at
(¢,0,...,0) with radius y(t) of length V2 + €2.

5 Expanding Universes and the Hubble constant

We begin by establishing some notation. Let M™*! be a cross-sectionally
spherical manifold in E™*2? with radius function v(¢). For any point p €
M™*! there is a unique ¢ € E! such that p € S, hence p = p(t) =
(t,p2(t), - s pnta(t))-

We now define the worldline of a point. Physically, a worldline gives the
past, present, and future history of a point: where it is at a particular time
for all times t. We assume the movement of a point through time is due
exclusively to the expansion of the universe (cf §2), and therefore given a
point at two times ;3 < %1, it occupies the “same position” on the cross-
sectional sphere at time ¢; as it does at time t3. With this in mind, we
define the worldline of a point p € M™! with the aid of S"(0,,1,1), the
unit n-sphere in E™*! centered at the origin 0,11 € E™*!. For convenience
of notation, we list the coordinates of a point a € S™(0,,4+1,1) as “2 through
n + 2” instead of “1 through n + 1,” i.e., a = (a9, -, an+2). We define the
worldline determined by a € S™"(0p11,1) to be

Aa) = {(t,Y(D)az, -, ¥(E)ans2) : £ € B'}.

It is easy to see (1): a # b if and only if A(a)NA(b) = 0, and (2): for any p €
M™* p € A(a) where a = (pa(t)/Y(t),- -+, pns2(t)/¥(t)) (in other words,
{A(a) : @ € S"(0,41,1)} is a partition of M™*1). We define the worldline
of a point p € M™! to be A(a) where a = (pa(t)/Y(t), -+, Pua2(t)/7(2))-
This definition of worldline allows us to give an easy calculus proof of the
lemma below which says that the angle formed by two points p(t), ¢(¢) and
the center c(t) of the sphere S?* does not change as the points move along



their worldlines. In order to discuss this angle, let p(t),¢(¢) be two points
on S, and let C; be a great circle on S through p = p(t) and ¢ = ¢(¢), and
let Ap,(t) be the shorter arc on C; with end points p and gq. We denote the
length of this arc by r(¢); it is the distance between p(t), ¢(t) as measured on
S7. We define a(t) to be the angle of positive radian measure determined
by p,q, and c(t) = (¢,0,...,0) (with ¢(¢) as the vertex of the angle).

The following Lemma is intuitively clear for an expanding circle (with
fixed center). By choosing a great circle on an expanding n-sphere (with
fixed center) it is again intuitively clear. The reader may still consider it
intuitively clear when the center is moving as in the lemma. We give a
formal proof.

Lemma If M™t! is a cross-sectionally spherical manifold with radius
function ~(t), and y(t) > 0 for all t in an open interval J, then the angle
a(t) determined by p(t),q(t), and c(t) = (¢,0,---,0) is a constant for all
telJ.

Proof. Let a,b € S™(0,41,1) be such that p(t) € A(a) and g(t) € A(b).
Using a standard formula from calculus, we show that «(t) is the angle
between a,b for all t € J. Put v = p(t) — c(t) and w = ¢(t) — ¢(¢). Using a
well-know formula from vector calculus, we have

V- -W
COSOt(t) = W
v(t)* 3077 aib;
V()2
= a-b

which shows that a(t) = ZaO,,4+1b is independent of ¢.

Exercise 5.1 Prove the Lemma by drawing a sketch and showing that ap-
propriate triangles are similar (see Figure 1).

Our main definition is a version of Hubble’s formula (1).
Definition 5.2 A cross-sectionally spherical manifold
M™M= (St te g}

s said to have the expanding Hubble property over the interval J if there
exists a real-valued function H(t) such that H(t) > 0 for all t € J, and for

10



any two points p(t),q(t) in S7, their distance apart r(t) as measured on Sf*
satisfies the relation dr/dt = H(t)r(t).

We now discuss conditions on the radius function +y(¢) of a cross-sectionally
spherical manifold which imply the Hubble property for the manifold.

Proposition Let M™*! be a cross-sectionally spherical manifold such
that its radius function y(t) > 0 for all t in an open interval J. If dy/dt > 0
over J, then M"t! = U{S} : t € J} has the expanding Hubble property over
J.

Proof. As above, let S = P n M™*! for t € J be the family of
cross-sectional n-spheres with center c¢(t) and radius y(¢). Let p(t),q(t) be
distinct points on S7'. Let «(t) denote the angle of positive radian measure
determined by p(t),q(t), and (¢,0,...,0). By the Lemma, a(t) = a (a
constant) for all ¢ € J. Let r(t) denote the length of A, (the distance
between the two points as measured on Sf*). Since r(t) is the length of a
sector of a circle, we have

r(t) = ary(t). 3)
Thus dr iy
yn = ad—t. (4)
By substituting for a we get
d
- (%) (o), ®)
; " H@() (6)
dt ’

thus r(t) satisfies the desired relation where

dy
H(t) = (%) : (7)

Clearly, H(t) does not depend on p(t¢) and ¢(t). Since 7(t) and dvy/dt are
positive, it follows that H(¢) > 0, for all ¢ € J, and this completes the proof.

Both the balloon analogy and our discussion in this section depend on the
assumption that points p and q are receding from each other only because the

11



universe is expanding. That is, we require p and g to be fixed on the surface
of the balloon (S7*). In the case of the physical universe, this assumption
can be justified under appropriate conditions [16, p. 709].

Exercise 5.3 Give a discussion for collapsing universes analogous to the
discussion for expanding universes. In particular, give the definition for
“contracting Hubble property”, and prove the result analogous to the above
Proposition obtained by changing in the hypothesis of the above Proposition
“dry/dt > 07 to “dy/dt < 07, and in the conclusion “expanding” to ‘con-
tracting.”

It follows from the Proposition that cross-sectionally spherical manifolds
obey the version of Hubble’s formula given in (6), and therefore they provide
reasonable mathematical models of an expanding universe.

Since each radius function ~y(¢) produces a model, we are reminded of
a statement attributed to the English physicist J. J. Thomson [5, p. 242]:
“We have Einstein’s space, de Sitter’s space, expanding universes, contract-
ing universes, vibrating universes, mysterious universes. In fact, the pure
mathematician may create universes just by writing down an equation ... he
can have a universe of his own.”

Exercise 5.4 Find~y(t) and H(t) in the spacetime manifold defined by equa-
tion (2). Sketch the manifold for several values of n, and describe what hap-
pens to the universe at time t as t varies from 0 to +00 and from —oo to
+00 (recall that we use the x1-azis as the time axis).

Exercise 5.5 Show that in the following spacetime manifold H(t) = H is
indeed constant for all t. (cf. (7)):

e exp(2Hz1) = 25+ 15+ + T2 4 + To s,
where H > 0 and € > 0 are constants and exp(x) is the usual exponential

Sfunction.

Exercise 5.6 Consider the spacetime manifold defined by

2 2
l=z5+ -+

Find v(t) and H(t) in this manifold. Sketch the manifold for n = 1, and
describe what happens to the universe at time t as t varies. What geometric
term describes the shape of this manifold?

12



Exercise 5.7 Consider the spacetime manifold defined by
1=af+--+ap,

Find v(t) and H(t) in this manifold. Sketch the manifold for n = 1, and
describe what happens to the universe at time t as t varies between -1 and
+1. What can be said about the universe at time t with |[t| > 1¢ What
geometric term describes the shape of this manifold?

Exercise 5.8 Define two manifolds in which the universe goes through a
succession of expansions and collapses. In one manifold have each collapse
end in a point, and in the other manifold have each collapse end in a sphere
of arbitrarily small radius € (see Figure 2).

! | r""—_—-—-.-"ﬁ. i [} —_ !
| I|. [ R T T e I O A VAT T
1 | | i ! i | | il | : il i || |
L IIILJ-II h || [y 11 -II.I o | H Vi .'II'. ||I Il
i ) | LV { | i
\ SRV VY S
Figure 2

Exercise 5.9 Prove that if dr/dt(t) = H(t)r(t) where H(t) is a Riemann
integrable function, then there exists a function F(t) and a constant K such

that r(t) = K exp(F'(t)).

Exercise 5.10 Let r(t), s(t), H(t) be positive valued functions of a real vari-
able such that dr/dt = H(t)r(t) and ds/dt = H(t)s(t). Let a1,a2 be points
in E™ such that |a1| = |ag| = 1 (recall that |z — y| denotes the Euclidean
distance between points x,y € E™; so we are saying that ai,as both have
Euclidean distance 1 from the origin). The two rays (half lines) in E™ ema-
nating from the origin and passing through a1, and ag can be parametrized by

13



the functions Li(t) = r(t) - a1 and Lo(t) = s(t) - aa. Prove that the function
R(t) = |L1(t) — La(t)| satisfies the property dR/dt = H(t)R(t).

Exercise 5.11 Construct models of a universe having the expanding Hubble
property with spacetime E* and with the universe at time t the 3-ball B}
such that if u < t then B3 C B} (this model of spacetime does not have
an ambient space). In this exercise, define worldlines to be rays emanating
from the origin, measure the distance between two points p(t),q(t) using the
usual Euclidean distance (see Exercise 5.10), and treat the x4-azis as the
time azis. Hint: Start with two positive real valued functions s(t) and H(t)
such that s(t) is unbounded, ds/dt = H(t)s(t), and ds/dt > 0. Define B} =
U{s(u)y :y € U? and 0 < u < t}, where U? is the unit 2-sphere with center
at the origin of E3. First show that there exist points a = (a1,a2,a3),b =
(b1,ba,b3) € U? and constants 0 < ki, ks < 1 such that p(t) = kis(t)a and
q(t) = kas(t)b, and then consider the equation R(t) = |p(t) —

with Ezercise 5.10).

q(t)| (compare

The following exercises deal with manifolds which are toroidal in some
sense. The most familiar example of a toroidal manifold is the 2-torus (the
surface of a doughnut) in E? (see [3, 1.1-1.3]).

An n-torus T™ is an n-dimensional manifold that is cross-sectionally
spherical with respect to a circle A, called the axial circle. We consider only
the case where the circle A lies in the z;z,-plane, with center at the origin.

Exercise 5.12 Let T" 1! be the manifold defined by the equation
(@2 +23)7 — R+ a2+ + 22y = r(t)?

0<r(t) <R, and R > 0 is a constant. Show that T is an n + 1-torus.
Hint: for 0 <t < 2w, define a family of hyper-half-planes by

prtl _ {(z1,z1tan(t), z3,- -, Tpy2) 121 >0} f0<t<7/2, or3n/2 <t< 27
t {(z1,z1 tan(t), z3, -, xnt2) :x1 <0} if /2 <t < 37m/2

and show that the circle A, defined in the x1xo-plane with center at the origin
and radius R, is the azial circle of T™t' by showing that P[H’l NT"* s an
n-sphere with center p(t) = (a(t),b(t),0,---,0) on A and radius r(t). (To
consider T™t1 as a model of spacetime, the time variable is t, which can be
viewed as the angle formed by the line through the origin and the x1-azis).

14



Exercise 5.13 Let T2 be the version of 5.12 withn =1, R=4, and

() = sint/24+e  if0<t<2m
| t—2n)/t+e ift>2n

Sketch the manifold, and describe what happens to the universe at times
t =0 and t = 27. Over what interval is the universe expanding (respectively,
collapsing)?

Exercise 5.14 Let T2 be the version of 5.12 withn =1, R =4 and

2sin’t/8 + € if0 < t<8w
r(t) = ¢ tan(t) +¢ if 8m <t < 8w+ m/4
1+e ift>8n+n/4

Sketch the manifold, and describe the universe over the four time intervals
0 <t <2m21m <t < 4mdn <t <6mandbr < t < 8m. Hint:
the part of the manifold defined over 0 <t < 2w is in the “interior” of the
part of the manifold defined over 2 <t < 4.

In the following exercises, we introduce a cross-sectionally toroidal space-
time manifold, denoted V4. For a constant 0 < k < 1 and real valued
function R(t) with R(t) > 0,dR/dt > 0, for all t > 0, we define

TP = {(x1, 29,73, 24) : (€3 + 23)7 — R(D)] + 23 + 27 = k*R(1)?},
for all ¢ > 0, and
Vi=V4k,R) = U{T?:0 < t < oo}.

Exercise 5.15 Show that V* is cross-sectionally toroidal with respect to
each t > 0.

Exercise 5.16 For a fized time t > 0 show that the intersection of TJ
with the x1x9-plane is the union of two circles of radius (1 +k)R(to). Show
that if R(t) is unbounded, then as t varies from 0 to oo, the region swept out
in the x1x9-plane is the complement of a circular disk.

Exercise 5.17 Show that the intersection of V* with the z3z4-plane is
empty for k < 1.
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Exercise 5.18 For 0 < 0 < 27 let

p3 _ {(z1, 71 tan(d),z3,0) : 21 >0} f0<0<7/2, or3n/2 <0< 2w
o {(z1,z1 tan(0),z3,0) : 1 <0} if /2 <0 < 3m/2

(cf 5.12). Show that the intersection of T at any time t > 0 with Py is a
circle with center on the axial circle. Show that as t varies from 0 to oo,
the region swept out in Pg’ is a “triangular-shaped” region whose boundary
consists of two half-rays and part of a circle. Hint: the center of the circle

is on the azial circle, and the half-rays have slope +k/v/1 — k2.

Exercise 5.19 Define P93 as in 5.18 except that x4 is not restricted. Show
that for 0 < t, the intersection P03 NT = Sfe is a 2-sphere with center
c(t,0) = LyN A(t), where A(t) is the azial circle of T}, and Ly = Pj Nz1z2-
plane is a half-ray.

Given a point p € V%, there exists ¢ > 0 such that p = p(t) € T},
and there exists 0 < 6 < 27 such that p € S% (see 5.19). The point p(t)
can be located by use of four angles associated with p. For a given ¢, we
define the angular coordinates (0,¢,3,7) of a point p(t) € TP as follows.
The angle # is the angle between the positive z1-axis and the line Ly (where
Ly = P03 N z1z9-plane) measured clockwise from the positive zq-axis. Let
L¢p be the line segment with end points ¢(t,6) and p(t), and let p’ be the
perpendicular projection of p onto the zzo-plane. The angle ¢ is the angle
between the line Ly and the line L.y (note that L.y is the perpendicular
projection of L., onto the z;zs-plane) measured clockwise from Lj. The
angle [ is defined to be the angle between the positive x3-axis and the line
segment L., measured clockwise from the x3-axis. The angle v is defined to
be the angle between the positive z4-axis and the line segment L., measured
clockwise from the x4-axis (see Figure 3 where 0, ¢, and (3 are depicted)

Exercise 5.20 Show that the point p(t) € T} is determined uniquely by its
angular coordinates.

Exercise 5.21 Let p(t) € T? have angular coordinates (6,4, 3,7). For ev-
ery 0 < s < oo, let p(s) denote the point in T3 with the same angular
coordinates as p(t). Show that

{p(s):0 < s < oo}

is a ray emanating from the origin.
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12
Figure 3

6 Determining Hubble’s Constant

Using the formula H = v/r to determine Hubble’s constant requires mea-
suring r and v, the distance to and the radial velocity of a distant galaxy, far
enough away that its recession velocity is primarily caused by the expansion
of the universe. Radial velocity is measured by the shift in wavelength of
spectral lines from the galaxy (red shift). Various effects cause the lines
to spread, resulting in uncertainties in the measurement of v; nevertheless,
v is more precisely known than r (an interesting discussion of superlumi-
nal recession velocities may be found in [26, p. 242 ff]). Measurements of
r are obtained by using the inverse-square law to relate the intrinsic and
apparent brightness of a galaxy. Apparent brightness is easily measured;
values for intrinsic brightness are much harder to obtain (for an elementary
discussion of techniques through 1976 see [24, 247-248]), and more modern
techniques are discussed in [23]; also see [19]). An additional complication
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is the necessity of modifying the inverse-square law to account for matter
between the galaxy and the earth. Current estimates for H lie between 50
and 100 (kilometers/second)/megaparsec. In the models discussed in §4, it
is possible to find H in other ways. We show how this can be done.

Equation (7) can be solved easily for constant H (note that the right-
hand side of (7) is the derivative of log(r(t)) and we get

r(t) = Celt, (8)

where C' is a constant of integration. If we know the distance from the earth
to a distant galaxy at two times (say t9 < t1, and r(tg) = ro,7(t1) = 71),
then we can calculate H by taking the ratio r1 : g from (8). We get

1
H=—In"L. (9)
(t1 —t0) 1o
Exercise 6.1 Assume that we know the radial velocities v(t) = %(t) of a

galazy at two times (say to < t1, and v(ty) = vo,v(t1) = v1). Show that

He—1 1% (10)
(t1 —t0)  wo

We conclude this section with an order of magnitude calculation (some-
times called a Fermi calculation in physics) which shows that the formulas
(9) and (10) for H, based on two observations of the same galaxy, cannot
presently provide a more accurate value for H than is already known. The
cause for this lies in the relatively short time during which such observations
have been made, and the limited accuracy of measurements of distances and
radial velocities of galaxies. Hubble made his observations of radial veloc-
ities about 70 years ago; so as of today (¢t — t9) = 70 years. Using only
orders of magnitude, one megaparsec is approximately 3 x 10*° kilometers,
and 70 years is approximately 2 x 10° seconds. Taking what is considered a

possible “median” value for H, i.e.,

75 B
H =75 kms/sec/Mpc = I 100 ¢
and substituting into (10) we get
75 1 U1
In —,

3x 1019 T 2x10° wg
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and therefore

%1~ 1.000 000 005.
v

Thus we would have to measure the radial velocities of galaxies to about
5 parts per billion. Although radial velocities are more precisely known
than distances, this amount of precision is not possible with present day
measuring instruments. Alternately, we could wait for the time interval
(t1 — tp) to become large enough to compensate for the uncertainty in the
radial velocities. We leave it as an exercise to determine whether this choice
is practical.

Exercise 6.2 Assume v1/vg = 1.00001 and H = 75. Find the number of
years needed to determine this value of H.

7 Wormbholes, parallel universes, and infinite di-
mensions

Many science fiction stories allow space ships to travel faster than light by
“going into hyperspace.” In the n = 2 case, we can imagine “hyperspace” as
a tube through the interior of the sphere. The tube connects two points on
the surface, and the distance between the two points along the tube is less
than the distance between the two points for paths confined to the surface
of the sphere. Let us model such a tube. For brevity, we consider only the
spacetime H* discussed above, and leave the general n-dimensional case to
the reader. Let p and g be distinct points on S}, a 3-sphere cross-section of
H*. Let L be a straight line segment with end points p and ¢. Now consider
an affine space Pf that contains L. Roughly, the affine space Pé is a copy
of E* in ES that contains L but may not contain the origin of E®. There
are, of course, many such spaces containing L. Let § > 0 and define

T(L,0) = {z € P} : d(z,L) < 6}.

This gives the desired tube (see Figure 4).

It is interesting to speculate whether matter or energy might pass through
this “hyperspace” tube from one point of the universe S} to another point
of S}. The absence of an ambient space for our physical universe may make
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such transport impossible (however, see [17], [29], and for a less technical
discussion, [6]).

In studying the foundations of quantum mechanics, physicists have been
led to a number of results that contravene common sense. One famous such
paradox is the experiment which involves Schrédinger’s cat. The cat is put
into a sealed box with a cyanide capsule. If a radioactive atom decays, the
capsule will break, and the cat will die. Because the decay of a single atom
cannot be predicted, the outcome of the experiment is not known until the
box is opened. Using the mathematics of quantum mechanics, the situation
inside the box before it is opened is described as a superposition of two
wave functions. One describes a dead cat, and the other a live cat. When
we open the box, the superposition “collapses” to one or the other function,
depending on the result we see.

Common sense tells us that cat cannot be partly alive and partly dead
before we open the box. It must be one or the other, and hence the sup-
posed wave function cannot describe “reality”. There are various ways of
reconciling quantum mechanics and common sense. One of the more ex-
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otic ways declares that when the experiment is done, two parallel universes
are created. In one the cat dies, and in the other it lives (see [2] and [20,
Figure 20]). For another way in which parallel universes might arise, see
[28].

We now construct a model in which there are infinitely many spacetimes
(“parallel universes”). While this can be done in finite dimensions, we take
this opportunity to introduce an infinite dimensional version of Euclidean
space which is a subset of the well-known Banach space ¢2.

The space £? is the set of all countable-tuples (also called w-tuples)

= (z1,T2,...,Tn,-..)

of real numbers with the property that the infinite series Y z? converges.
We define E* to be the subset of £2 consisting of all points z in £2 for
which there exists an integer n such that z; = 0 for all ¢ > n (the notation
E> follows the convention we have been using, that superscripts indicate
dimension). The point with all coordinates equal to 0 is called the origin in
E®.

Each Euclidean space E" can be naturally embedded into £ in many
ways. For example, the mapping defined by

hy (21,22, ... ,2,)) = (z1,%2,...,2Tpn,0,0,...) (11)

embeds E™ onto
{r € E® :z; =0for i>n}. (12)

It will be clear from our discussion that in E*° we could easily allow
different spacetimes to have different dimensions, and even have different
time axes, but for the sake of brevity, all the spacetimes will be copies of
H* discussed in §4 and share the same time axis.

In order to get infinitely many copies of H* C E®, we partition the set
{2,3,4,...,n,...} into consecutive sets J; of size 4 where

J; = {45+ 2,45 + 3,45 + 4,45 + 5} (0 < 7).

Thus Jy = {2,3,4,5}, 1 = {6,7,8,9}, o = {10,11,12,13} and so on. For
each j > 0, define

X;’:{eroo:wi:Ounlessizl, or i€ Jj}.
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For example, a point (1, Z2,...,Ty,...) in X5 has all z; = 0 except possibly
T10,%11, %12, 213, and 1. To see that each X;’ is a copy of E5 we use the
following mappings. For 57 > 0 define h? : B5 — X;’ by

5 _
hj($17w2,$37$45$5) = (mlaoa T 707$27x37$43$570707 o )
—_———
441

Thus, hj is the map defined in (11), and X the set defined in (12) with
n = 5. Further, h? maps E° onto X7, h3 maps E° onto X5, and so on. The
sets X;’ have only the zi-axis of E* in common (the time axis). For each
7, let H;-l be the images of H* under the mapping h?.

Thus H;-l is a copy of the manifold H* in X ;-”, and X ]5 serves as the
ambient space of H;-l. Moreover, E*° serves as an ambient space for the set
of all ambient spaces X7 (j = 0,1,2,...). The family of H; (j = 1,2,...)
gives the desired model.

It is natural to ask whether we can connect these universes by “tubes,”
like the “hyperspace” tubes between points within a universe that we con-
structed earlier. The answer is yes; there are many ways that tubes can be
constructed, and we give a simple example. For two distinct points p, ¢ with
pin H;l and ¢ in HY (k # 7), let

X;-)’k:{mEEoo:mi:0unlessz'€{1}UJjUJk}
and let L be a straight line segment in X?,k with end points p and ¢, i.e.,
L={p+(1-XNg:0<X<1}

Let P} be an affine space in X?’k that contains L. The affine space P} is
a copy of E* in X;-’,k that may or may not contain the origin of sz. Let
0 > 0 and define

T(L,8) = {z € P} : d(z,L) < §}.

We call T'(L,d) a tube in E* from the spacetime H;-l to the spacetime H}.
If m is neither of k or j, then obviously T'(L,d) and X3, have at most the
origin in common, and therefore the tube T'(L, ) connects two of the par-
allel spacetime manifolds without going through any of the other spacetime
manifolds. We leave it to the reader to define tubes with other properties.
The transport of matter and energy through “hyperspace” tubes within
a universe and tubes between universes is discussed in [17], [29] and [6]
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(see [22, Chapter 8] for a popularization). Both types of tubes, referred to
as “wormholes” in physics, require the existence of matter with negative
energy density. No material with this property is known to exist, but the
existence and implications of such material are currently being considered in
physics. The quantum phenomena permitting the possibility of such matter
are discussed in [17] and [6]. For another implication of such matter, see

[27].

Exercise 7.1 Describe a model in which for each positive integer n there is
a spacetime of dimension n.

Exercise 7.2 Describe a model in which each of infinitely many spacetimes

have different time azes.

Exercise 7.3 Describe a finite-dimensional model in which there are in-
finitely many parallel universes.

We wish to thank Paul Duvall for suggestions concerning the Lemma in
85, and Creative Services, Learning Resources Center, UNCG for help with
the figures.
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