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1. INTRODUCTION

Let E be an infinite set, and [E]¥ the set of all countably infinite subsets of E.
A family A C [E]¥ is said to be almost disjoint (respectively, pairwise disjoint)
provided for A, B € A, if A # B then AN B is finite (respectively, AN B is empty).
Moreover, an infinite family A is said to be a mazimal almost disjoint family pro-
vided it is an infinite almost disjoint family not properly contained in any almost
disjoint family. In this paper we are concerned with the following set of topological
spaces defined from (maximal) almost disjoint families of infinite subsets of the
natural numbers w.

Definition 1.1. For an almost disjoint family Ao C [w]¥, define a topological space
¥(Ag) = wU Ay with the topology in which for every natural number n € w, the
singleton set {n} is a local base atn (i.e., n is an isolated point), and each A € Ag
has a local base consisting of sets of the form {A}U A\ F where F is a finite subset
of w.

The space 1(Ag) is well known. If the almost disjoint family is denoted by R and
the natural numbers by A then the space 1¥(Ag) was called VU R by S. Mréwka
[4]. The same space was called ¥ in [2, Exercise 5I], where it is attributed to J.
Isbell.

All the results in this paper can be stated in terms of the spaces ¥(Ag) (see
Remark 2.1) but for reasons of convenience and motivation (see §2), we prefer to
consider ¥(Ap) as a subspace of a larger space, which we now define.

Definition 1.2. Given ¢(Ay), let A1 C [Ag]* be a mazimal almost disjoint family.
Define a topological space ¥(Ag, A1) = (Ag) UA; = wU AgU Ay with the topology
in which local bases for points in wU Ao are taken to be the same as in ¥(Ap), and
a local base for a point X € Ay consists of all sets of the form

{X}UX\G)U((U{A\F(A): Ae X \G})
where G is finite, and F(A) is finite for all A € X \ G.
The space (Ao, A1), called a two step iteration of 1, was introduced in [6].

Definition 1.3. A topological space X satisfies the Hausdorff (respectively, Urysohn)
separation property (or axiom) provided for every pair of distinct points z,y € X
there exit open sets U,V in X such that x € Uyjy € V and UNV = (re-
spectively cl(U) N cl(V) = 0), where the closure of a set S C X is defined by
c(S)={x € X : for every open set V containing x, VN S # 0}.

In [6] we proved that every v(Ag,.41) is a Hausdorff space, i.e, satisfies the
Hausdorff property (see Corollary 4.2). The basic question we consider here is this:

Question 1.4. Do there exist maximal almost disjoint families Ao, A1 such that
(Ao, A1) satisfies the Urysohn property?
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Our main results are the following (small uncountable cardinals are reviewed in
§3). Theorem 1.5 and a preliminary version of Theorem 1.7 were presented in 1992
[13].

Theorem 1.5. There exists a mazimal Ag such that for every mazimal Ay, 1¥(Ao, A1)
is not Urysohn.

Theorem 1.6. Assume 0 < a. For every mazimal Ag there exist mazimal Ay such
that ¥ (Ao, A1) is not Urysohn.

Theorem 1.7. Assumel = c¢. There exist mazimal Ag and Ay such that (Ao, A1)
is Urysohn.

Theorem 1.5 and Theorem 1.6 show that in order to obtain a (A, .41) that
is Urysohn, a careful construction of Ay and 4; is needed (indeed h = ¢ implies
0 = a). Theorem 1.7 provides a consistent, affirmative answer to Question 1.4, but
at least one step in our proof cannot be carried out in ZFC alone (see Corollary
7.2); so Question 1.4 remains open in ZFC.

2. MOTIVATION

Our interest in Question 1.4 comes from the Scarborough-Stone problem [8]: Is
every product of sequentially compact spaces countably compact? At this time the
only complete solutions to this problem are for the class of hereditarily normal (i.e.,
Ts-spaces) and the class of Hausdorff spaces. For Ts-spaces there is a consistent,
positive solution [7] and a consistent negative solution [11]; so the problem is inde-
pendent and consistent for T5-spaces. For the class of Hausdorff spaces, there is in
ZFC a negative solution, i.e., a counterexample to the problem [6].

This brings up the question of whether there is in ZFC a counterexample to
the Scarborough-Stone problem in the class of Urysohn spaces, a separation axiom
which is obviously stronger than Hausdorff (and weaker than regular, i.e, 73). A
more specific question: can a Urysohn counterexample be constructed using an
iteration of 1), as was done in [6] to produce a Hausdorff counterexample? To use
the iteration of ¢ as in [6], one must first ask whether (Ao, A1) is Urysohn because
(Ao, A1) is the second step of the iteration (this is Question 1.4). While we do
not completely answer these questions, the results in this paper indicate that the
spaces (Ao, A1) have interesting connections with fundamental properties of the
natural numbers, and are of some interest in themselves.

Remark 2.1. If Ay is mazimal, and A1 # 0, then ¥ (Ag, A1) not regular. Never-
theless, the results in this paper can be interpreted as results about ¥ (Ag) which is
completely regular (in fact, a zero dimensional Hausdorff space). This holds because
one may work with Ay, a family of subsets of ¥(Ap), without reference to a larger
space.

3. SMALL UNCOUNTABLE CARDINALS

We recall some definitions (see [1] and [12]). Let w denote the set of natual
numbers, “w the set of all functions f : w — w, and [w]* the set of all infinite subsets
of w. We consider two partial orders on “w. Define f < g provided f(¢) < g(%)
for all 7 € w. We call this the coordinate-wise order. Define f <* g provided there
exists N € w such that f(i) < g(i) for all 4 > N. We call this the mod finite
order (or the order of eventual domination). A set X C “w is dominating in the
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coordinate-wise order (respectively, the mod finite order) provided for every f € “w
there exists g € X such that f < g (respectively, f <* g). We also consider the
order on [w]* defined by A C* B provided A \ B is finite.

a =min{|A| : A C [w]¥ is an infinite, maximal almost disjoint family }.
b = min{|B| : B C “w is unbounded in the mod finite order}.

¢ = |[w]“| (the cardinality of the continuum).

0 =min{|D|: D C “w is dominating in the mod finite order}.

Recall that 9 is also the minimum cardinality of a set D C “w that is dominating
in the coordinate-wise order [1, 3.6]

A family D C [w]¥, is dense provided for every infinite A € [w]“ there is K € D
such that K C* A, and D is called open provided for each K € D and H C* K,
HeD.

h = min{|D| : D is a family of dense open sets and ND = P}.

We use the well known fact that if D is a family of dense open sets and |D| < b
then ND is dense. A family R C [w]¥ is called a refining family on w provided for

every H € [w]¥ there exists R € R such that RC H or RCw\ H.
v=min{|R|: R C [w]” is a refining family on w}

A set H splits a set K provided |[KNH| = |K \ H| = w. A family § C [w]¥ is
called splitting if for every K € [w]¥, there exists H € S such that H splits K.

s = min{|S|: S C [w]¥ is a splitting family on w}.

Further recall that all six cardinals are uncountable and not larger than ¢, and
h < b,s and b < 0,a. Concerning the cardinals a and ? in the hypothesis of
Theorem 1.6, we mention that they are not related to each other in general: Cohen
models satisfy the inequality “a < 9” (cf [1, Theorem 5.2]) and S. Shelah constructed
a model for “0 < a” [9].

Concerning the cardinality of ¥(Ag), there is a model due to S. Hechler [3], in
which there exist infinite maximal almost disjoint families of infinite subsets of w
of every cardinality x for w; < k < ¢, with ¢ arbitrarily large.

4. NOTATION AND PRELIMINARY RESULTS

We relate the topology on ¥(Ag, A1) to “w, the set of all functions from the
natural numbers into itself. We assign a listing for each X € [A¢]“, X = {X,:i €
w}, and we pick a function fx € “w with the property fx (i) > max(X;N(U;j<;X;))
for all i € w. Note that if f > fx, then X; N (X;\ f(¢)) = 0 for j < i, hence
{X;\ f(@) : i € w} is a pairwise disjoint family. Since 4 is an almost disjoint
family, for every X € [Ag]“ there is such a function fx. For any X € [Ag]®,
N € w, and f € Yw we define

X\N ={X;:i> N}, and (X \N) T f =U{X;\ f(i) : i = N}
From the previous discussion, it is clear that sets of the form
UX,N,f) ={X} UX\N)UX\N)Tf
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where N € w and f > fx (f increasing), form a local base at X in (Ao, A1).
To illustrate this notation, we prove the following results. .

Lemma 4.1. For X,Y € [Ao]Y with X NY finite, there exists N, f such that
UY,N, f)nU(X,0,f) =0.

Proof. Pick N large enough that (Y \ N)N X = {), and define for i > N
f(i) > max[(U{X; : j <i}) N (U{Y; : N <j <i})]

(define f(i) = 0 for i < N). If n € U(Y,N,f)NnU(X,0,f), then there exist
i > N,j > 0such that n € (¥;\ f(©)) N (X; \ f(4)), but this is impossible by the
definition of f.

Corollary 4.2 ([6]). Every (Ao, A1) is a Hausdorff space.

Proof. The only separation for pairs of points that is not obvious is for two
points X,Y € A;, and they can be separated by disjoint open sets by Lemma 4.1.

Next, let us consider the character of points in ¥ (Ag,.41). Recall the character
of a point z in a space X is the smallest infinite cardinal number which is the
cardinality of a local base for the point. In 1 (Ag, A1), points in w are isolated (i.e.,
have character Ng), points in 4 have a countable local base (i.e., have character
No), and the character of points in 4; is given in the next result.

Theorem 4.3. If Ay is an infinite almost disjoint family, then each X € Ay, has
character ® in (Ao, A1).

Proof. Let D C “w be dominating in the coordinate-wise order with |D| = 0. It
is clear that {U(X,N,f) : N € w, f € “w} is a local base for X of cardinality 0.
We show that if B is any family of neighborhoods of X and |B| < 9 then B is not
a local base at X. Let B = {B, : @ < A} where A < 0. For each a < X there exists
N, € wand f, > fx such that U(X, Ny, fo) C By. Define g,(%) = min(X;\ fa(7))
for i € w. Since {go : @ < A} is not dominating (in the mod finite order) there
exists an increasing f € “w such that f £* g, for all & < A. Claim: No B, in B
is a subset of U(X,0, f), hence B is not a local base at X. To see that the Claim
holds, let @ < A. Pick ¢ > N, such that g4(¢) < f(7). Then g,(7) ¢ X;\ f(3). Since
9a(i) € Xi\ fa(i) C U(X, Na, fa), we have go(i) < f(i), and since fx < fo, we
have go (i) ¢ X; for j < i. Since f is increasing, j > ¢ implies f(j) > f(i) > go(3),
hence g,(i) & X; \ f(j) for j > i. Thus go(i) € U(X, Na, fa) \ U(X,0, f); so
Ba ¢ U(X,O,f)

Definition 4.4. If H € [w]” and h : H — w, we define an extension f__l of h by
h(n) = h(m) where m is the first integer in H such that n < m. We call h the van
Douwen extension of h.

5. PROOF OF THEOREM 1.5

Start with an almost disjoint family A = {E, : @ < w;} C [w]* with |A| = w;.
Partition each E € A into infinitely many infinite sets G4 = {E,,; : @ € w}. Define
0o : By = wxw such that ¢, [ E,,; is an order preserving bijection from E, ; onto
{i} X w. Thus ¢, is a bijection. Let F = {f, : 7 < b} C “w be an unbounded chain
in the mod finite order consisting of strictly increasing functions. Thus F C w X w
is an almost disjoint family; hence for each a < w1, {¢,1(f;) : 7 < b} is an almost
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disjoint family. Let {B, : @ < w1} be a partition of b where |B,| = b for every
a < wq. Then each set {f; : 7 € B,} is unbounded in the mod finite order. Define

H= |J {6'(f)Udsa'(f,):T € Ba}.
0<a<wr
To see that H is an almost disjoint family, consider the intersection of two of its
elements

[b0 ' (Fr) U b (FI N g (fu) U b5 (f)]-
Note that 7 # u, otherwise if 7 = u, then 7 € B, N Bg, hence a = 3. Since both
A, F are almost disjoint, it follows that #H is almost disjoint. Hence

A =HU{E,;:a<w,i<w}

is an almost disjoint family. Let Ay be any (maximal or not) almost disjoint family
containing A’ and let A; C [Ag]“ be a maximal almost disjoint family. To complete
the proof, we show that 1(Ag,.A;1) is not Urysohn. Since Gy is an infinite subset
of Ay, there exists X € A; such that X N Gy is infinite. Note that {G4 : @ < w1}
is a pairwise disjoint family (of countable subsets of A’) because if S € G, N Gg,
then E, N Eg is infinite, which implies @ = 3. Since X is countable, there exists
a < wp such that G, N X = 0. Pick Y € A; such that Y N G, is infinite.
We show that ¢(Ag, {X,Y}) is not Urysohn. Let U(X, N, f),U(Y, N, f) be basic
neighborhoods of X and V. Let U = U(X,N,f)Nw and V = U, N, f) N w.
Let J={j€w:Ey,; € X\N}and K = {k € w: E, € Y\ N}. By our
choice of X,Y both J, K are infinite. Now let m3 : w X w — w be the usual
projection map onto the second coordinate. Since Ep; C* U and E, C* V, we
may define functions g : J = w,h : K — w by g(j) = maxmy(¢o(Fp; \ U)) for
all j € J, and h(k) = maxm2(¢a(Ear \ V)) for all k € K. Let g,h be the van
Douwen extension of g, h respectively. Define I(i) = max{g(i), (i)} for i € w.
There exists 7 € B, such that f, £* I. Put A = ¢;5'(f;) U 5 (f-). Then
A e A C Ap. We show that A € c(U(X,N, f)) nc(U(Y,N,f)). It suffices
to show that |¢5 " (f,) NU| = |¢7(fr) N V| = w. To this end, let s € w. Pick
n > max{s, min J,min K’} such that I(n) < f-(n). There exist ji,j2, consecutive
members of J, such that j; < n < js, and ki, ko, consecutive members of K, such
that k1 <n <ky. Thus

max s (¢o (Eo,j, \ U)) = 9(j2) = §(n) < U(n) < f+(n) < f+(j2)
where the last inequality holds because f; is an increasing function. Similarly

max s (6o(Ba ks \ V) = h(ks) = hn) < U(n) < f,(n) < f, (k).

Thus we have ¢y ((j2, f-(j2))) & (Fo,j \ U). Yet (ja, fr(j2)) € bo(Eo,j,), hence

¢ ((j2; f+(j2))) € Eo,jy NU. It follows that = = ¢ ((j2, f-(j2))) € UN g (£7)
and since ¢g | Fp j, is order preserving, x > j» > n > s. In a similar way,

y = ¢ (ka, fr(k2)) € VN (f-) and y > s. This completes the proof.

6. PROOF OF THEOREM 1.7

Under several set theoretic assumptions about small uncountable cardinals, we
will construct Ay, A1, both maximal, and show that ¥ (A, A1) is Urysohn in three
main steps. First we construct 4p such that for any X,V € [A4g]¥ with X NY
finite, there exist open sets U of X and V of Y such that ¢l(U) Necl(V) N Ay = 0.
Next, we will construct A; so that |cl(U) Ncl(V) N Ai| < ¢ = b. Then we call on
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Lemma 6.4 that if X € A; and B C A; and |B| < b then there exists an open set
W of X, such that cl(W) N B = . All the assumptions we need follow from b = ¢.

Lemma 6.1. Assume s = c. There ezists a mazimal almost disjoint family Ao C [w]¥
such that for every H € [w]¥

HA€ Ao: |[ANH| = A\ H|=w}| <.

Proof. If there exists a maximal almost disjoint family.4¢ C [w]* with |4q] < ¢,
then we are clearly done. Therefore we assume that a = ¢. List [w]Y = {Hy : @ < ¢},
and assume that we have constructed by induction sets A, € [w]¥ for @ < v (where
v < ¢) such that

(1) B < o implies A, N Ag is finite,

(2) there exists 8 < a such that Ag N H, is infinite,

(3) B < o implies |Ay N Hg| < w or |4, \ Hg| < w.

We construct A, as follows. First we get a set H € [w]¥ such that

{4y :a<~y}U{H}

is an almost disjoint family such that one of its members has infinite intersection
with H,. To find H, take H = H, if A, N H, is finite for all & < v, otherwise,
since a = ¢, {A, : @ < 7} is not a maximal almost disjoint family; so there exists
H € [w]“ such that {4, : o < v} U{H} is an almost disjoint family, so take this
H. By hypothesis s = ¢, so {Hy N H : a < v} is not a splitting family (on H).
Thus there exists B € [H]|* such that no H, N H splits B. Put A, = B. This
completes the induction. Put Ag = {4, : @ < w}. Ap is a maximal almost disjoint
family by (1) and (2). To see that 4o satisfies the conclusion of the lemma, let
H € [w]“. There exists 8 < ¢ such that H = Hg. Thus by (3) for every f < a <,
|Aq N Hg| < w or |Ay \ Hp| < w.

Lemma 6.2. Assume b = s = ¢. There exists mazimal Ay such that for any
X,Y € [Ao), if XNY is finite, then there exist disjoint neighborhoods U of X and
V of Y such that cl(U) Nel(V)N Ay = 0.

Proof. Since s = ¢, let Ag be a family guaranteed by Lemma 6.1. We show that
Ao works. Let X,Y € [Ag]“ such that X NY is finite. By the Hausdorff property
we may find N € w and a function f € “w such that U(X, N, f)nU(Y, N, f) = 0.

Let

Ao(X) ={A € Ao : [AN(X\N) /| = [A\[(X\N) 1f]| =w},
A(Y)={A € A : [ANY\N) 1 f[=[A\[Y \ N) 1 f]| = w}.
For every A € Ao(X) U Ag(Y), define f4 € [w]“ such that

AN[(X\N)1faU (Y \N)1fa] =0.
Since |Ao(X) U Ag(Y)| < ¢ = b there exists g € [w]“ such that f4 <* g for all
A€ Ag(X) U Ap(Y). We may also assume that f < g. We show that

Cl(U(X7 N, g)) n CI(U(Ya N, g)) NAo = 0.

Let A € Ag. If A € Ap(X), then fq4 <* g, hence AN (X \ N) 1 g is finite; so
there is a neighborhood of A missing U(X, N, g). Likewise, if A € Ao(Y"), there is
a neighborhood of A missing U(Y, N, g). Otherwise, A & (Ag(z) U Ag(Y")), hence

[AN(XA\N) 1f] <wor [A\[(X\N)1f]| <w, and



[ANY\AN) tf] <wor [A\[(Y\N) /]| <w.
The only one of the four cases that needs attention is the case

AN IX\N) )] < w and [A\[(V \ N) 1 )| < w.

This implies, however, that A Cc* (X \ N) 1 f and A C* (Y \ N) 1 f which is
impossible since U(X, N, f)NU(Y, N, f) = 0.

Lemma 6.3. Let K, X € [Ag]“ such that X C* K. Then for every neighborhood
U of K there exists a neighborhood V of X such that V\ {X} CU.

Proof. Start with a basic neighborhood
{K}JUK\GU(U{A\F(A): Ae K\G}) CU.
Since H = X \ K is finite, the basic set
V={X}JUX\(HUGUU{A\F(A): Ae X\ (HUG)}
satisfies the conclusion of the lemma.

Lemma 6.4. If X € A; and B C A; \ {X} and |B| < b, then there exists an open
neighborhood U of X such that cl(U)N B = 0.

Proof. ForeveryY € Blet N(Y) € wand f(Y) € “w be such that U(Y, N(Y), f(Y))n
U(X,0,f(Y)) =0. Let f be an upper bound (mod finite order) of {f(Y) : Y € B}.
Put U = U(X,0, f). We show that cl(U) "B = 0. Fix Y € B. There exists M € w
such that for all i > M, f(Y)(i) < f(4). Define a function g so that g > f(Y) and

9(i) > max{Y¥; N (Uj<m X;)}
for all 1 > N(Y). We show that U(Y,N(Y),g)NU(X,0, f) = 0. If not empty, there

exists ¢ > N(Y),j > 0and z € wsuch that x € (Y;\ g(0)) N (X;\ f(4)). It j > M
then f(Y)(j) < f(j); hence

¥i\g(0)) N (X;\ £(5) € (Vi \ F() (@) N (X5 \ F(YV) (7)) = 0.
Thus j < M. Hence z € Y;N(Uj<mX;); so z < g(i) which contradicts z € Y;\ g(7)).

Proof of Theorem 1.7. Assume h = ¢. By Lemma 6.2, we may assume that
Ap has the property that for any X,Y € [Ag]“Y with | X NY| < w, there exists
disjoint neighborhoods U(X,Y) of X and V(X,Y) of Y such that cl(U(X,Y)) N
cd(V(X,Y)) N Ay = 0. In other words, for every A € Ag there exists a finite
set F(A) such that A\ F(A)NUX,Y) =0 or A\F(A) NV(X,Y) = 0. List
[Ao] = {Hq : @ < ¢}. We now construct the members of 4; by induction.
Suppose we have constructed X, € [Ag]* for all @ < 7, where v < ¢ such that

(i) if B < a then X, N Xp is finite,

(ii) there exists § < a such that Xz N H,, is infinite,

(iii) for all pairs (8, 7) where 8 < 7 < a, and all 7 < { < o, X¢ ¢ cl(U(Xp,X,))N
Cl(V(Xﬁ, X.,—))

We construct X, as follows. First pick any H € [Ag]¥ such that

{Xo:a<~y}U{H}

is an almost disjoint family such that at least one member intersects H, in an
infinite set. This is possible because {X, : a < v} is not maximal (since a =

¢). For a < 8 < v, and open set W we say that “W decides (a,3)” provided
WNU(Xq,Xp) =0 0or WNV(X,,Xg) =0. Define

D(a,B) = {K € [H]” : some open neighborhood W of K decides (a, 8)}.
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We show that D(a, 3) is dense and open in [H]¥. Given E € [H]|“,let E' = {4 €
E :|ANU(Xq,X5)| < w} if this set is infinite, and otherwise, let E' = {A € E :
|[ANV (X4, X5)| < w}. By the property on Ag, E' is infinite. Clearly E' € D(a, 3).
That D(a, ) is open follows from Lemma 6.3. Pick any

X, en{D(a,B) :a < f <7}

This is possible since the intersection of less that h dense open set is non-empty.
Since X, € D(a,p) for all & < f < «, (iii) holds for X,. This completes the
construction of A; = {X, :a < ¢}

It follows from (i) and (ii) that .4; is a maximal almost disjoint family on
[Ao]“. We show that ¢ (Ag, A1) is Urysohn. Since points in 1(Ag) have local
bases consisting of clopen sets in (A, A1), it suffices to find a Urysohn separa-
tion for two points X,Y € A;. By lemma 6.2 there exist disjoint neighborhoods
U=UX,Y)of X and V =V (X,Y) of Y such that cl(U) Nel(V)N Ay = 0. By
(iii), |(U) N (V)N A1| < ¢ = b. By Lemma 6.4, there exists a neighborhood U’ of
X such that (U") N (dU)Ncd(V)NA) =0. Put U(X) =U'NU. Then U(X) is
a neighborhood of X and V a neighborhood of Y such that ¢/(U(X)) Nel(V) = 0.

7. PROOF OF THEOREM 1.6

Let Ao be maximal. Pick disjoint X,Y € [Ag]“. Let {fo : @ € 9} be dominating
in [w]“. By induction on d we construct for i < w, A(a,i), B(a,4) € Ag \ (X UY)

such that
(@) [A(e, i) N (X 1 fo)[ = [Bla,)) N (Y 1 fa)| =w
(b) Ala, ), B(e,i) & {A(B,4), B(B,7) : B < a,j <w}U{A(e,j), Bla,j) : j < i}

Suppose we have constructed A(a, i), B(a,i) for a < v and i < w. We construct
step 7.
Put
F ={A(a,1),B(a,i) :a<v,i <w}UXUY.

Since F C Ag, F is almost disjoint, and since |F| < 0, the set of those F € F
such that |FF'N (X 1 f,)| = w is not maximal because d < a. Thus there exists
an infinite H C (X 1 f,) such that F N H is finite for all F € F. Since Ag is
maximal, there exists A € Ay such that AN H is infinite. Thus A € F. We put
A(v,0) = A, and Fy = F. Next we put F; = Fo U {A(7,0)}, and repeat the
preceding argument to construct A(y,1) € Ao \ (F U {A(v,0)}) satisfying (a). We
now repeat the preceding process countably many times to construct A(y,i) for
i < w satisfying (a), (b). In a similar manner, starting with 7 = U{F; : i < w}
we construct B(+y,1) for ¢ < w. This completes the induction. For a < 0 we define
Xo = {A(a,i), B(a, ) : i < w}. By (b), {X4 : @ <0} C [Ao]¥ is a pairwise disjoint
family. We claim that if 4; D {X, : @ < 0} (maximal or not) then (A4, 4;) is not
Urysohn. To see this consider two neighborhoods, U(X, N, f) and U(Y, N, f). Pick
a < 0such that f <* f,. We show that X, is in the closures of both neighborhoods.
Consider an arbitrary neighborhood U (X4, M, h). Let X, = {(X,)i : i € w} be the
preassigned listing of X,. Pick i > M such that A(a,i), B(a,i) € X, \ M. Then
there exists j,k € w such that A(a,4) = (Xq);, B(a,i) = (Xo)k. Put A = (Xq);
and B = (X,)r- Then by (a)

I(ANRG) N (X1 fa)l = [(BAAK) N (Y 1 fo)| = w.



Hence

[(A\RG) N(X\N) 1 fo)l = [(B\A(E) N (Y \N) T fo)| = w.
Since f <* fa, we have that U(X,, M,h) NU(X,N, f) # 0 and U(X,, M,h) N
U(Y,N, f) # 0. Thus

Xo € UK, N, /) NU, N, g).
To complete the proof we take A; D {X, : o < 9} to be maximal.

In 1992, James Baumgartner sent us a proof showing that the conclusion of
Theorem 1.6 holds in forcing models obtained by adding random reals to a model
of CH. Some years later we proved Theorem 1.6 from which his result follows since
0 = w; in such models. The idea of Baumgartner’s proof serves to prove the
following result.

Theorem 7.1. Assume 0 < t. For every mazimal Ag and any Z € [Ag]“, there
exists a partition of Z into two infinite sets X,Y such that ¥( Ao, {X,Y}) is not
Urysohn.

Proof. Let Ay C [w]“ be maximal, and Z = {4; : i € w} € [Ao]“. Let
D C “w be a dominating family of increasing functions with |D| = 9. For each
f € D, by maximality pick Ay € Ay such that Ay N (Z 1 f) is infinite. Let
dp ={i €ew: AN (A;\ f(i))} # 0}. Then {dys : f € D} is not a refining family;
so there exists H € [w]“such that for all f € D, both H Ndy and (w\ H)Nd; are
infinite. Put X = {4;:i € H} and Y = {4; : i € w\ H}. To see that X,Y are
as required, consider neighborhoods U(X, N, g) and U(Y, N, g) where N € w and
g € Yw. There exists f € D such that g <* f. Pick M so that if ¢ > M, then
9(i) < f(i). Now dy has infinite intersection with both H and w \ H. We show
that the point Ay is in the closure of both U(Y, N, g) and U(X, N, g). Since df N H
is infinite, we may pick ¢ > N, M such that ¢ € df N H and g(i) < f(i). Hence
AN A;\g(i) #0. Thus Ay € cl(U(X,N,g)). Similarly, Ay € cl(U(Y, N, g)). This
completes the proof.

Corollary 7.2. Assume d < t. No maximal Ao satisfies the conclusion of Lemma
6.2. Thus whether there exists a maximal Agy satisfying the conclusion of Lemma
6.2 is consistent with and independent of ZFC.

We thank James Baumgartner for his discussion of ¢(A4g, .41 ) in the random real
model, and Alan Dow for the observation that our earlier proof of Theorem 1.7,
using p = ¢, works using the weaker hypothesis § = .
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