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Overview

Today:
● Discuss homework 6 solutions
● Math needed for discrete-log based cryptography
● Diffie-Hellman and ElGamal
● Elliptic Curves - idea and translation of Diffie-Hellman to ECC

Next:
● Quiz on Thursday (based on HW6 & formal models)
● Graded Homework 2 due on Thursday!
● Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)
● Project project due in two weeks (April 3) - don’t forget this!



The Discrete Log Problem
For every prime number p, there exists a primitive root (or “generator”) 
g such that

g1, g2, g3, g4, …, gp-2, gp-1   (all taken mod p)
are all distinct values (so a permutation of 1, 2, 3, ..., p-1).

Example: 3 is a primitive root of 17, with powers:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3i mod 17 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

fg,p(i) = gi mod p is a bijective mapping on {1,.., p-1}

fg,p(i) is easy to compute (modular powering algorithm)

Inverse, written dlogg,p(x) = fg,p
-1(x), is believed to be difficult to compute

g and p are global 
public parameters



Diffie-Hellman Key Exchange (DHE)
Assume g and p are known, public parameters

Bob
b ← random value from {1, …, p-1}
B ← gb mod p

Alice
a ← random value from {1, …, p-1}
A ← ga mod p

Send A to Bob

Send B to Alice

Sa ← Ba mod p Sb ← Ab mod p

In the end, Alice’s secret (Sa) is the same as Bob’s secret (Sb):

Sa = Ba = gba = gab = Ab = Sb

Eavesdropper knows A and B, but to get a or b requires solving 
the discrete logarithm problem!



ElGamal Encryption
The idea is simple:

Define “long term key” for one side of Diffie-Hellman

Key Generation (Bob):
● b ← random value from {1, …, p-1}
● B ← gb mod p
● (B,g,p) is public key (i.e., encryption key)  -  b is private key

For Alice to send a message to Bob:
● Get (B,g,p) from Bob
● Pick k ← random value from {1, …, p-1}
● For message M ∈ {1, …, p-1}, ciphertext (C1,C2) = (gk mod p, M·Bk mod p)

For Bob to decrypt ciphertext (C1,C2):
● K ← C1

b mod p            // Same as Bk above
● M ← C2·K

 -1 mod p      // Same as original plaintext (see DHE for similarity)



ElGamal Encryption
The idea is simple:

Define “long term key” for one side of Diffie-Hellman

Key Generation (Bob):
● b ← random value from {1, …, p-1}
● B ← gb mod p
● (B,g,p) is public key (i.e., encryption key)  -  b is private key

For Alice to send a message to Bob:
● Get (B,g,p) from Bob
● Pick k ← random value from {1, …, p-1}
● For message M ∈ {1, …, p-1}, ciphertext (C1,C2) = (gk mod p, M·Bk mod p)

For Bob to decrypt ciphertext (C1,C2):
● K ← C1

b mod p            // Same as Bk above
● M ← C2·K

 -1 mod p      // Same as original plaintext (see DHE for similarity)

Big Warning!!!!

In ElGamal, only one side can be a long-term key!!!

Serious problems if sender re-uses k!



Abstracting the Problem
There are many sets over which we can define powering.

Example: Can look at powers of n⨯n matrices (A2, A3, etc.)

Any finite set S with an element g such that fg: S → S is a bijection 
(where fg(x) = gx for all x ∈ S) is called a cyclic group
● Very cool math here - see Chapter 5 for more info (optional)

If fg is easy to compute and fg
-1 is difficult, then can do Diffie-Hellman

“Elliptic Curves” are a mathematical object with this property

In fact: fg
-1 seems to be harder to compute for Elliptic Curves than Zp

● Consequence: Elliptic Curves can use shorter numbers/keys than standard 
Diffie-Hellman - so faster and less communication required!



Elliptic Curves
The basic idea...

Key ideas:
● Formula with x and y defines a set 

of points (x,y).
● Formula is quadratic in y, cubic in x
● Since quadratic in, symmetric 

around x axis

Define “addition of two points”:
● Draw a line through the two points
● Where else does it hit curve

○ 3 places because cubic in x
● Reflect around x axis



Elliptic Curves over Finite Fields
General formula for “Elliptic Curves over Zp” (p is prime):

Ep(a,b) is the set of points (x,y) satisfying y2 ≡ x3+ax+b (mod p)

Technical requirement for a and b: 4a3 + 27b2 ≢ 0 (mod p)

Squares in Z5

02 = 0
12 = 1
22 = 4
32 = 4
42 = 1

Points in E5(2,1)     ( y2 ≡ x3+2x+1 (mod 5) )

x = 0: y2 = x3+2x+1 mod 5 = 1
y = 1 or 4 (see table on left)

x = 1: y2 = x3+2x+1 mod 5 = 1+2+1 = 4
y = 2 or 3

x = 2: y2 = x3+2x+1 mod 5 = 8+4+1 = 3 (no sol’n)

x = 3: y2 = x3+2x+1 mod 5 = 27+6+1 = 4
y = 2 or 3

x = 4: y2 = x3+2x+1 mod 5 = 64+8+1 = 3 (no sol’n)

Points

O
(0,1)
(0,4)
(1,2)
(1,3)
(3,2)
(3,3)



Elliptic Curves over Finite Fields
General formula for “Elliptic Curves over Zp” (p is prime):

Ep(a,b) is the set of points (x,y) satisfying y2 ≡ x3+ax+b (mod p)

Technical requirement for a and b: 4a3 + 27b2 ≢ 0 (mod p)

Important points
● Can add points as before (no sensible picture, however)
● For a point P, can calculate

○ 2*P = P+P
○ 3*P = P+P+P
○ 4*P = P+P+P+P
○ ...

(eventually repeats →  P generates a cyclic group)
● Notation is multiplying rather than powering, but can do Diffie-Hellman!

Important: Discrete logs seem to be harder to compute for Elliptic Curves than Zp
● Consequence: Elliptic Curves can use shorter numbers/keys than standard 

Diffie-Hellman - so faster and less communication required!



Revisiting Key Sizes
From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken 
with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be
➔ How big do keys in a public key system need to be?

From NIST pub 800-57a:


