
How to Make a Side-Scrolling Game
This is a tutorial on how to create a side-scrolling game in BYOB. In a side scrolling game, the
background slides left and right behind a character as it progresses through the game.
However, in BYOB backgrounds are fixed and cannot be moved, which creates a challenge. So
while we think of this as a scrolling background we actually use sprites as the background,
making sure they are in the bottom layer so that characters will appear on top of the background
sprites. Sprites can be moved around and even placed partially off the stage, which is exactly
what we need to create a side-scrolling game.

The description below shows how to make a basic background that can be scrolled left and
right. If you are the kind of person that likes to work along with these write-ups in BYOB, don’t.
Just read the description and figure out how it works. When it comes to actually building this in
BYOB there are a couple of things that make it easier, and are easier to describe after the
basics are described, so just the “Basics” section and don’t start trying things in BYOB until you
understand all of that section and reach the “Build It” section.

Basics
The first step is to create the background. The stage is 480 pixels wide by 360 pixels high, so it
is best to make a background that is 360 pixels high and some multiple of 480 pixels wide. You
can use whatever drawing program you like, but make sure the dimensions of your finished
background picture follow these guidelines. We’ll make a background that is three stages wide,
and so create the following 1440 pixel wide image:

Next, we divide this up into three pieces, each 480 pixels wide. When we load these in as sprite
costumes, we’ll set the “center” location of the sprite to be the lower left corner - no, that’s not a
“center” in any sense of the word, but it’s a good reference point for what we’re doing. Here’s
the idea: the stage is a “window” into the larger image, and the part that we can see contains at
most two of the 480 pixel wide pieces. This picture shows the basics: our picture is divided into
three pieces, and when viewed as one big picture each piece starts at a multiple of 480. We use
a variable named “BGShift” to indicate the position of the stage, so in this picture valid values of
BGShift are 0 through 960, inclusive.

There are several ways to implement a side-scrolling background. The approach we describe is
to have a script associated with each “piece” sprite that runs when it receives a signal and
decides if and how to display itself. Lets use a sprite-local variable named “myLeftPos” to
indicate the position of the leftmost column in the piece (so the value of “myLeftPos” for the first
piece is 0, and the value of “myLeftPos” for the second piece is 480, etc.). Under what
conditions is the piece off the stage and hence not seen? First, it is off the screen if the
rightmost pixel in the piece is strictly to the left of BGShift (in other words, if myLeftPos+479 <
BGShift). Second, it’s off the screen if the leftmost pixel is greater than BGShift+479, the
rightmost position of the stage (in other words, if myLeftPos > BGShift+479). Writing all of this
out as a Boolean expression, a piece is not visible if

(myLeftPos+479 < BGShift) or (myLeftPos > BGShift+479).

Using this Boolean expression, we can make each of the background pieces decide whether to
display itself or not. If the expression is true, then the piece is invisible, so all it has to do is
make sure it’s not visible by using the “hide” block. What if it is visible? In that case we need to
decide how to position the block, and make sure it is visible. Recall that we set the “center” of
each piece to be the lower left hand corner of the piece, so we need to figure out what the
coordinates of the lower left hand corner are, relative to the stage coordinates. The x coordinate
of the lower left corner of the piece is offset by myLeftPos-BGShift from the stage lower-left
corner, which is at position (-240,-180). Therefore, the coordinates of the lower-left corner of
the piece are ((myLeftPos-BGShift)-240,-180), and we can use this in a “goto x y” block.

Let’s put all these pieces together. When we receive a signal saying the background needs to
be updated (we’ll name this signal “UpdateBG”), we first test to see if the piece is visible. If it’s
not, we hide the piece; otherwise, we set the position as just described, and show the piece.
Here’s the entire script:

We also need a script that will initialize each piece - we’ll set it up so that when the program
starts (when the green flag is clicked), it sets its “myLeftPos” variable moves back in layers as
far as possible (moving back 1000 layers should be far enough), and hides itself. Here is the
initialization script for each background piece:

Hopefully you understand these scripts, which are for individual background pieces. Now it’s
time to put some of this together!

Build It
The first step in building this example program is to set up the three background sprite pieces.
It’s tempting to start by creating three sprites with the appropriate backgrounds and then build
these scripts, but you can save yourself some work if you’re careful about the order you do
things in. So to start, use the “Choose new sprite from file” button in the sprites area to create
one new sprite, and use your left-most background piece as the file to load. Next, go into the
costumes for this sprite and hit “Edit” to bring up the costume editor. You need to change the
“center” of the sprite, which is easier if you can see the whole thing, so zoom out in the “Paint
Editor” (the magnifying glass with the minus sign) until you can see the whole thing and then
click the plus sign next to “Set costume center” to bring up the center positioning cross-hairs -
just grab that with the mouse and drag it all the way down to the lower left hand corner. When
you’ve done that, hit “OK” and your costume is all set up. Finally, it’s good to rename your script
to keep it straight - name it something like “BG1” for the first background piece - and then build
the two scripts that were described in the last section. Now you have a single background sprite,
with the correct center location specified, and the scripts that allow it to be initialized and
displayed properly.

By doing that all for a single background sprite first, now you can just duplicate the sprite (right
click on the sprite in the sprites area) to copy that full sprite, scripts and all. Do that twice. For
each new sprite you’ll need to go into costumes, import the appropriate costume and edit the
costume to set the center point. You will also need to change the “myLeftPos” value in the
initialization script so that it is the correct value for each background piece. At this point, if you
used three background pieces, you should have three sprites, each with the display and

initialization scripts, and each one with a different costume and “myLeftPos”. You should be able
to set the variable “BGShift” and broadcast the “UpdateBG” signal to draw the background in
any position that you would like. Next, let’s make a “driver” function.

Since this driver isn’t associated with any of the background sprites, we will put this code in the
“Scripts” area of the background. If you are writing a game which is “driven” by a player’s
character you could just as easily control the background display from that character’s scripts.
The first thing we need to do is initialize variables - this is plural because we are going to create
a new variable named “BGWidth” to indicate how wide the overall background is, which in our
case is 1440 pixels (480*3). While we could hard-code this number into our scripts, having it
available as a variable makes it easier to change the background - adding a fourth BG piece will
just involve cloning a background piece, setting the background costume and “myLeftPos”
appropriately, and changing the BGWidth to reflect the larger background. After we initialize
BGShift and BGWidth, we would like to draw the initial background. We can do this by
broadcasting “UpdateBG” so that each piece figures out how to display itself, but there is a
small issue with timing here: there are variables that each background piece needs to initialize,
and we don’t want to broadcast this message before they are ready. For that reason, we put in a
“wait” block to allow the pieces time to initialize. This is actually not the best solution, since we
don’t really know how long the piece initialization takes, but it’s good enough for this example
(can you think of a better solution?). This is the resulting initialization script:

Finally, we want to scroll the background - we decrease the BGShift when the left arrow is
pressed, and increase it when the right arrow is pressed. We want to make sure we stop when
the edges of the background are reached, giving the following two scripts that respond to left
and right arrow presses:

If you implement all of this, then you should have a simple program that scrolls this three-piece
background left and right.

Some Enhancements to Consider
This is a very basic solution. It’s functional, and works pretty well, but if you were going to put
some real time into this, there are a couple of things to consider improving:

● As explained above, synchronizing the initialization scripts is important, and it’s a little
sloppy to put in a 0.1 second wait and just assume that this is enough. A more reliable

solution would synchronize scripts so that you were guaranteed that everything was
initialized before the first “broadcast UpdateBG” block was executed.

● The scrolling could be smoother. In particular, if you try this out and scroll right and left
really fast, you might see flashing white spots between the background pieces. This
happens because one piece is moved and redrawn before the other, and so there is a
very brief time when there is a gap between the pieces. There are several ways to fix
this, but probably the simplest is as follows: you can have the background pieces
overlap by 10 pixels (the amount that pieces are moved) and ensure in the artwork that
the 10 pixel overlap is consistent. By “consistent” I mean that if one piece moves before
another you don’t get flashes of different colors - if you looked at it in slow motion it
might look like the background “stretched out” a little when this happens, but when it
happens fast you won’t notice this. Your eye will catch a very brief flash of a different
color, but it will not detect a very brief stretching of the image.

● Reacting to the moving background: In a lot of games, a character will move along in
front of the background, going over obstacles and that sort of thing. This can be
challenging to program, and the best way to do it is to keep track of actual obstacle
positions in a list that your program can use. While not as good a solution an alternative
is to make sure your artwork outlines obstacles in a specific color - then you can detect
when your character hits an obstacle by using the predicate that looks like this:

There are other ways to deal with this, but this is probably the easiest to do quickly, and
is particularly appropriate for going through a maze (where maze walls can use this
color) or similar tasks.

● You can also “wrap around” the background for a continuous background - in other
words, moving right from the rightmost piece brings the leftmost piece back in. For
games in which you are exploring a repetitive area, and the game interest comes from
other characters rather than the background, this can be very appropriate.

Doing This Yourself
If you want to experiment with these techniques, the three background pieces are available for
download on the class web site. With those images, you should be able to pretty easily
reconstruct the scripts described in this tutorial.

	How to Make a Side-Scrolling Game
	Basics
	Build It
	Some Enhancements to Consider
	Doing This Yourself

